
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


6:
\(4D=2^2+2^4+...+2^{202}\)
=>3D=2^202-1
hay \(D=\dfrac{2^{202}-1}{3}\)
7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)

a, (5-5)-1 . \(\left(\dfrac{1}{2}\right)^{-2}\) . \(\dfrac{1}{10^5}\)
= 55 . \(\dfrac{1^{-2}}{2^{-2}}\) . \(\dfrac{1}{10^5}\)
= (55 . \(\dfrac{1}{10^5}\)) . \(\dfrac{1}{4}\)
= \(\dfrac{5^5}{10^5}\) . \(\dfrac{1}{4}\) = \(\left(\dfrac{1}{2}\right)^5\). \(\dfrac{1}{4}\)
= \(\dfrac{1}{32}.\text{}\dfrac{1}{4}\)= \(\dfrac{1}{128}\)
b: \(=\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\left(2\cdot3-1\right)}=\dfrac{4}{5}\)
c: \(=\dfrac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}=\dfrac{2^4\cdot5^3\left(5+2\right)}{2^3\cdot5^2}=10\cdot7=70\)

a: \(\dfrac{5^5}{5^x}=5^{18}\)
=>5-x=18
hay x=-13
b: \(\dfrac{2^{4-x}}{16^5}=32^6\)
\(\Leftrightarrow2^{4-x}=\left(2^5\right)^6\cdot\left(2^4\right)^5=2^{30+20}=2^{50}\)
=>4-x=50
hay x=-46
c: \(\dfrac{2^{2x-3}}{4^{10}}=8^3\cdot16^5\)
\(\Leftrightarrow2^{2x-3}=2^9\cdot2^{20}\cdot2^{20}=2^{49}\)
=>2x-3=49
=>2x=52
hay x=26
d: \(\dfrac{2^3}{2^x}=4^5\)
\(\Leftrightarrow2^{3-x}=2^{10}\)
=>3-x=10
hay x=-7
e: \(9\cdot5^x=6\cdot5^6+3\cdot5^6\)
\(\Leftrightarrow9\cdot5^x=9\cdot5^6\)
\(\Leftrightarrow5^x=5^6\)
hay x=6
f: \(7\cdot2^x=2^9+5\cdot2^8\)
\(\Leftrightarrow2^x\cdot7=2^8\cdot7\)
\(\Leftrightarrow2^x=2^8\)
hay x=8

\(\frac{5}{12}+\frac{5}{20}+\frac{5}{30}+...+\frac{5}{9900}=\frac{5}{3.4}+\frac{5}{4.5}+\frac{5}{5.6}+...+\frac{5}{99.100}\)
\(5\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(5\left(\frac{1}{3}-\frac{1}{100}\right)=\frac{97}{60}\)

a) \(10^{n+1}-6.10^n\)
\(=10^n.10-6.19^n\)
\(=10^n.\left(10-6\right)\)
\(=10^n.4\)
b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)
\(=2^n.2^3+2^n.2^2-2^n.2+2^n.1\)
\(=2^n.\left(2^3+2^2-2+1\right)\)
\(=2^n.11\)
c) \(90.10^k-10^{k+2}+10^{k+1}\)
\(=90.10^k-10^k.10^2+10^k.10\)
\(=10^k.\left(90-10^2+10\right)\)
\(=0\)
d) \(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)
\(=\dfrac{2,5.5^n.10}{5^3}+5^n-\dfrac{6.5^n}{5}\)
\(=\dfrac{5^n}{5}+5^n-\dfrac{6.5^n}{5}\)
\(=\dfrac{5^n+5^{n+1}-6.5^n}{5}=\dfrac{5^n+5^n.5-6.5^n}{5}=\dfrac{5^n\left(1+5-6\right)}{5}=\dfrac{0}{5}=0\)

a) \(\left(\frac{1}{3}-\frac{1}{5}\right)^2:\left(\frac{1}{5}\right)^2=\left[\left(\frac{1}{3}-\frac{1}{5}\right):\frac{1}{5}\right]^2=\left(\frac{2}{15}:\frac{1}{5}\right)^2=\left(\frac{2}{3}\right)^2=\frac{4}{9}\)
c)\(7\frac{1}{23}+\frac{10}{27}-5\frac{1}{23}+\frac{17}{27}+2^3=\left(7\frac{1}{23}-5\frac{1}{23}\right)+\left(\frac{10}{27}+\frac{17}{27}\right)+2^3=2+1+8=11\)
d)\(5.\left(-\frac{5}{2}\right)^2+\frac{1}{5}.\left(-3\right)^2=5.\frac{25}{4}+\frac{1}{5}.9=\frac{125}{4}+\frac{9}{5}=\frac{661}{20}\)
4227
Ta có: \(12+90+\left(5^3\cdot5^2+10^3\right)\)
\(=102+5^5+1000\)
=1102+3125
=4227