K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lớp 7 mà khó đến vậy sao

17 tháng 6

Giải:

Vì Oz là phân giác của góc xOy nên:

\(\hat{xOz}=\hat{zOy}=\frac12\hat{xOy}\)

\(\hat{xOz}=\hat{zOy}=\) \(\frac{60^0}{2}\)

\(\hat{xOz}=\hat{zOy}=30^0\)


S
18 tháng 8

\(a.\frac12+\frac32x=\frac34\)

\(\frac32x=\frac34-\frac12=\frac14\)

\(x=\frac14:\frac32=\frac14\cdot\frac23=\frac16\)

\(b.2,5-2\cdot\left(x-0,5\right)=2\)

\(2\cdot\left(x-0,5\right)=2,5-2=0,5\)

\(x-0,5=0,5:2=0,25\)

\(x=0,25+0,5=0,75\)

\(c.\left(x+\frac32\right)^3=\frac{125}{8}=\left(\frac52\right)^3\)

\(x+\frac32=\frac52\)

\(x=\frac52-\frac32=\frac22=1\)

\(d.\left(x-\frac13\right)^2=\frac{25}{4}=\left(\pm\frac52\right)^2\)

\(\left[\begin{array}{l}x-\frac13=\frac52\Rightarrow x=\frac{17}{6}\\ x-\frac13=-\frac52\Rightarrow x=-\frac{13}{6}\end{array}\right.\)

vậy \(x\in\left\lbrace\frac{17}{6};-\frac{13}{6}\right\rbrace\)

\(e.7\cdot3^{x-1}-3^{x+2}=-540\)

\(3^{x-1}\cdot\left(7-3^3\right)=-540\)

\(3^{x-1}\cdot\left(7-27\right)=-540\)

\(3^{x-1}\cdot\left(-20\right)=-540\)

\(3^{x-1}=\left(-540\right):\left(-20\right)\)

\(3^{x-1}=27=3^3\)

⇒ x - 1 = 3

⇒ x = 4

F(x)⋮G(x)

=>\(2x^3-7x^2+12x+a\) ⋮x+2

=>\(2x^3+4x^2-11x^2-22x+34x+68+a-68\) ⋮x+2

=>a-68=0

=>a=68

a: \(D=x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)

\(=2x^2+x-x^3-2x^2+x^3-x+3\)

=3

=>D không phụ thuộc vào biến

b: \(E=4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)

\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)

=-24

=>E không phụ thuộc vào biến

a: Thể tích của bể cá là: \(100\cdot60\cdot50=3000\cdot100=300000\left(\operatorname{cm}^3\right)\)

b: Thể tích nước ban đầu trong bể là:

\(100\cdot60\cdot30=6000\cdot30=180000\left(\operatorname{cm}^3\right)\)

\(30dm^3=30000\left(\operatorname{cm}^3\right)\)

Thể tích nước sau khi cho thêm hòn đá vào là:

\(180000+30000=210000\left(\operatorname{cm}^3\right)\)

Chiều cao của mực nước là:

210000:100:60=35(cm)

a: \(5x\left(x-3\right)-x\left(5x+1\right)=16\)

=>\(5x^2-15x-5x^2-x=16\)

=>-16x=16

=>x=-1

b: \(4x\left(x-1\right)+x\left(3-4x\right)=5\)

=>\(4x^2-4x+3x-4x^2=5\)

=>-x=5

=>x=-5

c: \(5\left(x^2+4x-3\right)-x\left(5x+3\right)=19\)

=>\(5x^2+20x-15-5x^2-3x=19\)

=>17x=19+15=34

=>x=2

a: Ta có: \(\hat{A_2}+\hat{A_1}=180^0\) (hai góc kề bù)

=>\(\hat{A_2}=180^0-75^0=105^0\)

ta có: \(\hat{A_1}=\hat{A_3}\) (hai góc đối đỉnh)

\(\hat{A_1}=75^0\)

nên \(\hat{A_3}=75^0\)

Ta có: \(\hat{A_2}=\hat{A_4}\) (hai góc đối đỉnh)

\(\hat{A_2}=105^0\)

nên \(\hat{A_4}=105^0\)

Ta có: \(\hat{B_3}+\hat{B_4}=180^0\) (hai góc kề bù)

=>\(\hat{B_4}=180^0-120^0=60^0\)

ta có: \(\hat{B_3}=\hat{B_1}\) (hai góc đối đỉnh)

\(\hat{B_3}=120^0\)

nên \(\hat{B_1}=120^0\)

Ta có: \(\hat{B_4}=\hat{B_2}\) (hai góc đối đỉnh)

\(\hat{B_4}=60^0\)

nên \(\hat{B_2}=60^0\)

b: Ta có: \(\hat{xEF}=90^0\)

=>xx'⊥zz' tại E

=>\(\hat{xEz}=\hat{x^{\prime}Ez}=\hat{x^{\prime}EF}=90^0\)

Ta có: \(\hat{yFz^{\prime}}+\hat{y^{\prime}Fz^{\prime}}=180^0\) (hai góc kề bù)

=>\(\hat{yFz^{\prime}}=180^0-110^0=70^0\)

ta có: \(\hat{y^{\prime}Fz^{\prime}}=\hat{yFz}\) (hai góc đối đỉnh)

\(\hat{y^{\prime}Fz^{\prime}}=110^0\)

nên \(\hat{yFz}=110^0\)

Ta có: \(\hat{yFz^{\prime}}=\hat{y^{\prime}Fz}\) (hai góc đối đỉnh)

\(\hat{yFz^{\prime}}=70^0\)

nên \(\hat{y^{\prime}Fz}=70^0\)

Bài 1:

a: \(A\left(x\right)=5x^4-7x^2-3x-6x^2+11x-30\)

\(=5x^4-7x^2-6x^2-3x+11x-30\)

\(=5x^4-13x^2+8x-30\)

\(B=-11x^3+5x-10+5x^4-2+20x^3-34x\)

\(=5x^4+20x^3-11x^3+5x-34x-2-10\)

\(=5x^4+9x^3-29x-12\)

b: A(x)+B(x)

\(=5x^4-13x^2+8x-30+5x^4+9x^3-29x-12\)

\(=10x^4-4x^3-21x-42\)

A(x)-B(x)

\(=5x^4-13x^2+8x-30-5x^4-9x^3+29x+12\)

\(=-9x^3-13x^2+37x-18\)

Bài 2:

a: \(M=2x^2+5x-12\)

Bậc là 2

Hệ số cao nhất là 2

Hệ số tự do là -12

b: M+N

\(=2x^2+5x-12+x^2-8x-1=3x^2-3x-13\)

c: P(2x-3)=M

=>\(P=\frac{2x^2+5x-12}{2x-3}=\frac{2x^2-3x+8x-12}{2x-3}\)

\(=\frac{x\left(2x-3\right)+4\left(2x-3\right)}{2x-3}\)

=x+4

16 tháng 8

Câu 7:

Giải:

Giá tiền của mỗi chiếc máy tính bán trong đợt đầu là:

8 x (100% + 30%) = 10,4(triệu đồng)

Tổng số tiền thu được khi bán 70 chiếc máy tính trong đợt đầu là:

10,4 x 70 = 728 (triệu đồng)

Giá của mỗi chiếc máy tính bán được trong đợt sau là:

10,4 x 65% = 6,76(triệu đồng)

Số tiền thu được khi bán hết số máy tính còn lại là:

6,76 x (100 - 70) = 202,8 (triệu đồng)

Tổng số tiền mà cửa hàng thu được khi bán hết 100 cái máy tính là:

728 + 202,8 = 930,8 (triệu đồng)

Tiền vốn của 100 cái máy tính là:

8 x 100 = 800 (triệu đồng)

Sau khi bán hết 100 máy tính thì người đó lãi và lãi số tiền là:

930,8 - 800 = 130,8 (triệu đồng)

Kết luận: Sau khi bán hết 100 máy tính người đó lãi và lãi số tiền là 130,8 triệu đồng



17 tháng 8

Bài 8:

a; Doanh thu năm 2019 là: 5,6 x \(\frac34\) = 4,2 (triệu usd)

b; Sau năm năm để lời 7,8 triệu usd thì năm 2020 phải thu được:

7,8 - (-1,8 + 5,6 - 3,6 + 4,2) = 3,4(triệu usd)

Kết luận: năm 2019 thu 4,2 triệu usd

năm 2020 thu 3,4 triệu usd


a: (2x+3)(x+5)

\(=2x^2+10x+3x+15\)

\(=2x^2+13x+15\)

b: (x-1)(2x+7)

\(=2x^2+7x-2x-7\)

\(=2x^2+5x-7\)

c: \(\left(2x+1\right)\left(4x^2-2x+1\right)\)

\(=8x^3-4x^2+2x+4x^2-2x+1\)

\(=8x^3+1\)

d: \(\left(3x-2\right)\left(9x^2+6x+4\right)\)

\(=27x^3+18x^2+12x-18x^2-12x-8\)

\(=27x^3-8\)

e: 2x(x+1)(x-1)

\(=2x\left(x^2-1\right)\)

\(=2x^3-2x\)