K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(x^4+x^3+4x^2+5x+25=0\)

=>\(x^4+3x^3+5x^2-2x^3-6x^2-10x+5x^2+15x+25=0\)

=>\(x^2\left(x^2+3x+5\right)-2x\left(x^2+3x+5\right)+5\left(x^2+3x+5\right)=0\)

=>\(\left(x^2+3x+5\right)\left(x^2-2x+5\right)=0\)

\(x^2+3x+5=\left(x+\frac32\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\forall x\)

\(x^2-2x+5=\left(x-1\right)^2+4\ge4>0\forall x\)

nên x∈∅

b: \(x^4+3x^3-14x^2-6x+4=0\)

=>\(x^4-2x^3-2x^2+5x^3-10x^2-10x-2x^2+4x+4=0\)

=>\(x^2\left(x^2-2x-2\right)+5x\left(x^2-2x-2\right)-2\left(x^2-2x-2\right)=0\)

=>\(\left(x^2-2x-2\right)\left(x^2+5x-2\right)=0\)

TH1: \(x^2-2x-2=0\)

=>\(x^2-2x+1=3\)

=>\(\left(x-1\right)^2=3\)

=>\(x-1=\pm\sqrt3\)

=>\(x=1\pm\sqrt3\)

TH2: \(x^2+5x-2=0\)

=>\(x^2+5x+\frac{25}{4}-\frac{33}{4}=0\)

=>\(\left(x+\frac52\right)^2=\frac{33}{4}\)

=>\(x+\frac52=\pm\frac{\sqrt{33}}{2}\)

=>\(x=-\frac52\pm\frac{\sqrt{33}}{2}\)

c: \(x^4+5x^3-14x^2-20x+16=0\)

=>\(x^4+6x^3-4x^2-x^3-6x^2+4x-4x^2-24x+16=0\)

=>\(x^2\left(x^2+6x-4\right)-x\left(x^2+6x-4\right)-4\left(x^2+6x-4\right)=0\)

=>\(\left(x^2+6x-4\right)\left(x^2-x-4\right)=0\)

TH1: \(x^2+6x-4=0\)

=>\(x^2+6x+9=13\)

=>\(\left(x+3\right)^2=13\)

=>\(x+3=\pm\sqrt{13}\)

=>\(x=-3\pm\sqrt{13}\)

TH2: \(x^2-x-4=0\)

=>\(x^2-x+\frac14=\frac{17}{4}\)

=>\(\left(x-\frac12\right)^2=\frac{17}{4}\)

=>\(x-\frac12=\pm\frac{\sqrt{17}}{2}\)

=>\(x=\frac12\pm\frac{\sqrt{17}}{2}\)

d: \(3x^4+2x^3-13x^2-4x+12=0\)

=>\(3x^4-3x^3+5x^3-5x^2-8x^2+8x-12x+12=0\)

=>\(3x^3\left(x-1\right)+5x^2\left(x-1\right)-8x\left(x-1\right)-12\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(3x^3+5x^2-8x-12\right)=0\)

=>\(\left(x-1\right)\left(3x^3+6x^2-x^2-2x-6x-12\right)=0\)

=>\(\left(x-1\right)\left\lbrack3x^2\left(x+2\right)-x\left(x+2\right)-6\left(x+2\right)\right\rbrack=0\)

=>\(\left(x-1\right)\left(x+2\right)\left(3x^2-x-6\right)=0\)

TH1: x-1=0

=>x=1

TH2: x+2=0

=>x=-2

TH3: \(3x^2-x-6=0\)

=>\(x^2-\frac12x-2=0\)

=>\(x^2-2\cdot x\cdot\frac14+\frac{1}{16}-\frac{33}{16}=0\)

=>\(\left(x-\frac14\right)^2=\frac{33}{16}\)

=>\(x-\frac14=\pm\frac{\sqrt{33}}{4}\)

=>\(x=\frac14\pm\frac{\sqrt{33}}{4}\)

6 giờ trước (18:03)

Từ đề bài, ta có hình vẽ sau:

\(\hat{BAC}=\hat{BAH}+\hat{CAH}=10^0+10^0=20^0\)

Xét ΔABC có

AH là đường cao

AH là đường phân giác

Do đó: ΔABC cân tại A

=>\(\hat{ABC}=\frac{180^0-\hat{BAC}}{2}=\frac{180^0-20^0}{2}=80^0\)

Ta có: \(\hat{KBC}+\hat{KBA}=\hat{ABC}\) (tia BK nằm giữa hai tia BA và BC)

=>\(\hat{KBA}=80^0-40^0=40^0\)

Xét ΔABG và ΔACG có

AB=AC

\(\hat{BAG}=\hat{CAG}\)

AG chung

Do đó: ΔABG=ΔACG

=>\(\hat{ABG}=\hat{ACG}\)

=>\(x=40^0\)

Bài 4:

AB//CD

=>\(\hat{BAK}=\hat{AKD}\) (hai góc so le trong)

\(\hat{BAK}=\hat{DAK}\) (AK là phân giác của góc BAD)

nên \(\hat{DAK}=\hat{DKA}\)

=>DA=DK

Ta có: DK+KC=DC

DA+BC=DC

mà DK=DA

nên CK=CB

=>ΔCKB cân tại C

=>\(\hat{CKB}=\hat{CBK}\)

\(\hat{CKB}=\hat{ABK}\) (hai góc so le trong, AB//CD)

nên \(\hat{ABK}=\hat{CBK}\)

=>BK là phân giác của góc ABC

Bài 2:

a: Xét ΔDAB có

K,E lần lượt là trung điểm của DA,DB

=>KE là đường trung bình của ΔDAB

=>KE//AB và \(KE=\frac{AB}{2}\)

Xét ΔCAB có

F,G lần lượt là trung điểm của CA,CB

Do đó: FG là đường trung bình của ΔCAB

=>FG//AB và \(FG=\frac{AB}{2}\)

Xét hình thang ABCD có

K,G lần lượt là trung điểm của AD,BC

=>KG là đường trung bình của hình thang ABCD

=>KG//AB//CD và \(KG=\frac12\left(AB+CD\right)\)

Ta có: FG//AB

KG//AB

FG,KG có điểm chung là G

Do đó: F,G,K thẳng hàng(1)

ta có: KE//AB

KG//AB

KE,KG có điểm chung là K

Do đó: K,E,G thẳng hàng(2)

Từ (1),(2) suy ra K,E,F,G thẳng hàng

b: Ta có: KE+EF+FG=KG

=>\(EF+\frac12AB+\frac12AB=\frac12\left(CD+AB\right)\)

=>\(EF=\frac12\left(CD+AB-2AB\right)=\frac12\left(CD-AB\right)\)

Bài 13:

a: \(\left\lbrack5\left(x-2y\right)^3\right\rbrack:\left(5x-10y\right)\)

\(=\frac{5\left(x-2y\right)^3}{5\cdot\left(x-2y\right)}\)

\(=\left(x-2y\right)^2\)

b: \(\left\lbrack5\left(a-b\right)^3+2\left(a-b\right)^2\right\rbrack:\left(b-a\right)^2\)

\(=\frac{5\left(a-b\right)^3+2\left(a-b\right)^2}{\left(a-b\right)^2}\)

\(=\frac{5\left(a-b\right)^3}{\left(a-b\right)^2}+\frac{2\left(a-b\right)^2}{\left(a-b\right)^2}\)

=5(a-b)+2

c: Sửa đề: \(\left(x^3+8y^3\right):\left(x+2y\right)\)

\(=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}\)

\(=x^2-2xy+4y^2\)

Bài 11:

a: Gọi ba số tự nhiên liên tiếp lần lượt là a;a+1;a+2

Tích của hai số sau lớn hơn tích của hai số đầu là 52 nên ta có:

\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=52\)

=>\(\left(a+1\right)\left(a+2-a\right)=52\)

=>2(a+1)=52

=>a+1=26

=>a=25

Vậy: ba số tự nhiên liên tiếp cần tìm là 25;25+1=26; 25+2=27

b: a chia 5 dư 1 nên a=5x+1

b chia 5 dư 4 nên b=5y+4

ab+1

\(=\left(5x+1\right)\left(5y+4\right)+1\)

=25xy+20x+5y+4+1

=25xy+20x+5y+5

=5(5xy+4x+y+1)⋮5

c: \(Q=2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

=6n⋮6

Bài 8:

a: \(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)

\(=x^2+2xy-3x^3+3x^3+2y^3-y^3\)

\(=x^2+2xy+y^3\)

Khi x=5;y=4 thì \(A=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)

b: x=-1;y=-1

=>xy=1

\(x^2y^2=\left(xy\right)^2=1^2=1;x^4y^4=\left(xy\right)^4=1^4=1\) ; \(x^6y^6=\left(xy\right)^6=1^6=1;x^8y^8=\left(xy\right)^8=1^8=1\)

=>B=1-1+1-1+1=1

9 giờ trước (14:35)

Đề :cộng phân thức.giúp mình câu 10, 11, 12 nhé

S
11 tháng 8

10) đkxđ: \(x\ne\pm3\)

\(\frac{7}{a^2-9}+\frac{5}{a-3}+\frac{1}{a+3}=\frac{7}{\left(a-3\right)\left(a+3\right)}+\frac{5\cdot\left(a+3\right)}{\left(a+3\right)\left(a-3\right)}+\frac{a-3}{\left(a+3\right)\left(a-3\right)}\)

\(=\frac{7+5a+15+a-3}{\left(a+3\right)\left(a-3\right)}=\frac{6a+19}{\left(a+3\right)\left(a-3\right)}\)

11) đkxđ: \(x\ne-1\)

\(\frac{2x-1}{x^3+1}+\frac{2x}{x^2-x+1}-\frac{x}{x+1}+2\)

\(=\frac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2x\cdot\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{x\cdot\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\) \(=\frac{2x-1+2x^2+2x-x^3+x^2-x+2x^3+2}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{\left(x+1\right)^3}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{\left(x+1\right)^2}{x^2-x+1}\)

13) đkxđ: \(x\ne\pm\frac32\)

\(\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x+5}{9-4x^2}\)

\(=\frac{5\cdot\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2\cdot\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2x+5}{\left(2x-3\right)\left(2x+3\right)}\)

\(=\frac{10x+15+4x-6+2x+5}{\left(2x-3\right)\left(2x+3\right)}\)

\(=\frac{16x+14}{\left(2x-3\right)\left(2x+3\right)}\)