
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


- Ta xét : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(n+1\right)-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)< 2\sqrt{n+1}-2\)
- Ta xét : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-\left(n-1\right)}=2\left(\sqrt{n}-\sqrt{n-1}\right)< 2\sqrt{n}\) ;

ta thấy \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>...>\frac{1}{\sqrt{n}}\)nên \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\)>\(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+...+\frac{1}{\sqrt{n}}\)=\(\frac{n}{\sqrt{n}}=\sqrt{n}\)
với mọi k thuộc N ta luôn có
\(\frac{1}{\sqrt{k}}=\frac{2}{\sqrt{k}+\sqrt{k}}< \frac{2}{\sqrt{k}+\sqrt{k-1}}\)=\(\frac{2\left(\sqrt{k}-\sqrt{k-1}\right)}{k-k+1}=2\left(\sqrt{k}-\sqrt{k-1}\right)\)
áp dụng tính chất này ta có
\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{n}}\)<2(\(\sqrt{1}-\sqrt{0}+\sqrt{2}-\sqrt{1}\)+...+\(\sqrt{n}-\sqrt{n-1}\))=\(2\left(\sqrt{n}-\sqrt{0}\right)=2\sqrt{n}\)

a/ \(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}=1+\dfrac{1}{2.2}+...+\dfrac{1}{n.n}\)
\(< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)
\(=1+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(=1+1-\dfrac{1}{n}=2-\dfrac{1}{n}< 2\)

Đặt \(A=\dfrac{1}{\sqrt{1}}+\dfrac{1}{\sqrt{2}}+...+\dfrac{1}{\sqrt{n}}\)
\(A=\dfrac{2}{\sqrt{1}+\sqrt{1}}+\dfrac{2}{\sqrt{2}+\sqrt{2}}+\dfrac{2}{\sqrt{n}+\sqrt{n}}\)
\(A>2\left(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{n}+\sqrt{n+1}}\right)\)
\(A>2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n+1}-\sqrt{n}\right)\)
\(A>2\left(\sqrt{n+1}-1\right)\)
Cần cm:\(2\left(\sqrt{n+1}-1\right)>\sqrt{n}\)
\(\Leftrightarrow4\left(n+1\right)+4-8\sqrt{n+1}>n\)
\(\Leftrightarrow3n+8>8\sqrt{n+1}\)
Lại có:\(8\sqrt{n+1}\le2\left(n+1\right)+8=2n+10\le3n+8\)(AM-GM)
Dấu "=" không xảy ra
=>đpcm

1. \(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)
\(N=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}+\frac{4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(N=\left(\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right).\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(N=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(N=\frac{4x}{x-3}\)
Vậy \(N=\frac{4x}{x-3}\)với \(x>0,x\ne4,x\ne9\)
2.Với \(x>0,x\ne4,x\ne9\)
Ta có \(N< 0\)\(\Leftrightarrow\frac{4x}{x-3}< 0\)\(\Leftrightarrow x-3< 0\)(Vì \(x>0\Leftrightarrow4x>0\)\(với\forall x\))\(\Leftrightarrow x< 3\)
Vậy ..........
3. Với \(x>0,x\ne4,x\ne9\)
Ta có \(\left|N\right|=1\Leftrightarrow\left|\frac{4x}{x-3}\right|=1\Leftrightarrow\orbr{\begin{cases}\frac{4x}{x-3}=1\\\frac{4x}{x-3}=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}4x=3-x\\4x=x-3\end{cases}}\)\(\orbr{\begin{cases}x=\frac{3}{5} \left(N\right)\\x=-1\left(N\right)\end{cases}}\)
Vậy ...............

Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.