
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{x-5}{x-10}=\frac{x-10+5}{x-10}=1+\frac{5}{x-1}\\ \)
Để \(\frac{x-5}{x-10}>0th\text{ì}1+\frac{5}{x-1}>0\\ \Rightarrow\frac{5}{x-10}>-1\Rightarrow\begin{cases}x-10>0\\x-10< -5\end{cases}\Rightarrow\begin{cases}x>10\\x< 5\end{cases}\)
Vậy x>10 hoặc x<5

Bài 2:
a: =>11/13-5/42+x=15/18+11/13
=>x-5/42=15/18
=>x=5/6+5/42=35/42+5/42=40/42=20/21
b: 2x-3=x+1/2
=>2x-x=3+1/2
=>x=7/2

Bài 1:
a, Ta có:
\(\dfrac{-8}{15}=-\dfrac{5}{18}+-\dfrac{1}{6}\)
b, Ta có:
\(-\dfrac{8}{15}=\dfrac{11}{15}-\dfrac{19}{15}\)
Bài 2:
a, \(\dfrac{11}{13}-\left(\dfrac{5}{12}-x\right)=-\left(\dfrac{15}{18}-\dfrac{11}{13}\right)\)
\(\Rightarrow\dfrac{11}{13}-\dfrac{5}{12}+x=-\dfrac{15}{18}+\dfrac{11}{13}\)
\(\Rightarrow x=-\dfrac{15}{18}+\dfrac{11}{13}+\dfrac{5}{12}-\dfrac{11}{13}\)
\(\Rightarrow x=-\dfrac{15}{8}+\dfrac{5}{12}=-\dfrac{35}{24}\)
b, \(2x-3=x+\dfrac{1}{2}\)
\(\Rightarrow2x-x=\dfrac{1}{2}+3\Rightarrow x=\dfrac{7}{2}\)
Chúc bạn học tốt!!!

\(\frac{x-5}{x-10}=\frac{x-10+5}{x-10}=1+\frac{5}{x-1}\)
Để \(\frac{x-5}{x-10}>0\) thì \(1+\frac{5}{x-1}>0\)
\(\Rightarrow\frac{5}{x-10}>-1\)\(\Rightarrow\begin{cases}x-10>0\\x-10< -5\end{cases}\)\(\Rightarrow\begin{cases}x>10\\x< 5\end{cases}\)
Vậy x > 10 hoặc x < 5
\(\frac{x-5}{x-10}>0\Leftrightarrow\)\(\begin{cases}x-5>0\\x-10>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x>5\\x>10\end{cases}\) \(\Leftrightarrow x>10\)
hoặc \(\begin{cases}x-5< 0\\x-10< 0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}x< 5\\x< 10\end{cases}\) \(\Leftrightarrow x< 5\)
Vậy x > 10 hoặc x < 5 thì \(\frac{x-5}{x-10}>0\)

a) Khi a = -2 thì x = (-2 + 5)/(-12) = 3/(-12) = -1/4
Vậy x là số hữu tỉ âm
b) Khi a = -9 thì x = (-9 + 5)/(-12) = (-4)/(-12) = 1/3
Vậy x là số hữu tỉ dương
c) Để x = 0 thì a + 5 = 0
a = -5
d) Khi a = -37 thì
x = (-37 + 5)/(-12)
= (-32)/(-12)
= 8/3 > 0
Mà 0 > -1,8
Vậy x > -1,8 khi a = -37

\(\left(2x-1\right)x>0\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\2x-1>0\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\2x-1< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>0\\x>\frac{1}{2}\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x< \frac{1}{2}\end{cases}}\)
\(\Leftrightarrow x>\frac{1}{2}\)hoặc \(x< 0\).

1) a) Để x > 0
=> \(2a-5< 0\)
\(\Rightarrow2a< 5\)
\(\Rightarrow a< 2,5\)
\(\text{Vậy }x>0\Leftrightarrow a< 2,5\)
b) Để x < 0
\(\Rightarrow2a-5>0\)
\(\Rightarrow2a>5\)
\(\Rightarrow a>2,5\)
\(\text{Vậy }x< 0\Leftrightarrow a>2,5\)
c) Để x = 0
\(\Rightarrow2a-5=0\)
\(\Rightarrow2a=5\)
\(\Rightarrow a=2,5\)
\(\text{Vậy }x=0\Leftrightarrow a=2,5\)
2) \(\text{Vì }a\inℤ\Rightarrow3a-5\inℤ\)
\(\text{mà }x\inℤ\Leftrightarrow3a-5⋮4\)
\(\Rightarrow3a-5\in B\left(4\right)\)
\(\Rightarrow3a-5\in\left\{0;4;8;...\right\}\)
\(\Rightarrow3a\in\left\{5;9;13;....\right\}\)
\(\Rightarrow a\in\left\{\frac{5}{3};3;\frac{13}{3};6;....\right\}\)
\(\text{Mà }a\inℤ\Rightarrow a\in\left\{3;6;9;...\right\}\text{thì }x\inℤ\)

a) \(x\)là số hữu tỉ khi \(a-17\ne0\Leftrightarrow a\ne17\).
b) \(x\)là số hữu tỉ dương khi \(\frac{13}{a-17}>0\Leftrightarrow a-17>0\Leftrightarrow a>17\).
c) \(x\)là số hữu tỉ âm khi \(\frac{13}{a-17}< 0\Leftrightarrow a-17< 0\Leftrightarrow a< 17\).
d) \(x=-1\Rightarrow\frac{13}{a-17}=-1\Rightarrow13=17-a\Leftrightarrow a=4\).
e) \(x>1\Rightarrow\frac{13}{a-17}>1\Leftrightarrow\frac{13-a+17}{a-17}>0\Leftrightarrow\frac{30-a}{a-17}>0\Leftrightarrow17< a< 30\).
f) \(0< x< 1\Rightarrow0< \frac{13}{a-17}< 1\Leftrightarrow a-17>13\Leftrightarrow a>30\).

ta có :
\(\hept{\begin{cases}-x^2-3< 0\\-\left(x-1\right)^2-5< 0\end{cases}\forall x\Rightarrow A>0}\forall x\)
hơn nữa nếu x hữu tỉ thì A hữu tỉ
khi đó A là số hữu tỉ dương
Số hữu tỉ dương: `(2x-1)/3`
Để `x` là số hữu tỉ thì: `2x-1∈Z`
Mà: `1∈Z=>2x∈Z`
`2∈Z=>x∈Z`
Để `(2x-1)/3` là số hữu tỉ dương thì:
`(2x-1)/3>0`
`2x-1>0`
`2x>1`
`x>1/2`
Vậy đề `(2x-1)/3` là số hữu tỉ dương thì: `x>1/2` và `x∈Z`
Hay: đề `(2x-1)/3` là số hữu tỉ dương thì: `x∈N`*
với x>0