K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5

Số tận cùng chẵn: 0, 2, 4 (3 số)
Hàng trăm: không 0, khác tận cùng
Hàng chục: khác 2 số kia

Tính:

Cuối \(0\)\(5 × 4 = 20\)

Cuối \(2\)\(4 × 4 = 16\)

Cuối \(4\)\(4 × 4 = 16\)

Tổng \(= 20 + 16 + 16 = 52\) số.

27 tháng 5

cho hình tam giác ABC diện tích là 60cm2 trên v=cạnh BC lấy điểm M sao cho MD = MC nối A với M trên AM lấy diểm D sao cho MD=1/3AM kéo dài đoạn BD cắt AC hãy chứng tỏ AN=NC

22 tháng 12 2016

Gọi số cần tìm là abcde ( e chẵn và các chữ số khác nhau từng đôi một )
TH1 : e = 0
Chọn e : 1 cách
Chọn a :5 cách
chọn b :4 cách
chọn c :3 cách
chọn d :2 cách
=> Theo Quy tắc nhân có : 1.5.4.3.2 = 120 .
TH2 : e # 0
Chọn e :2 cách
Chọn a :4 cách
chọn b :4 cách
chọn c :3 cách
chọn d :2 cách
=> Theo quy tắc nhân có :2.4.4.3.2 = 192
=> Có tất cả 192 +120 =312 số chẵn có 5 chữ số khác nhau
-

6 tháng 8 2019

tại sao b 4 cách

c 3 cách và d 2 cách

 

23 tháng 8 2021

Số tự nhiên đó có dạng \(\overline{abcde}\)

a, a có 5 cách chọn.

b có 5 cách chọn.

c có 4 cách chọn.

d có 3 cách chọn.

e có 2 cách chọn.

\(\Rightarrow\) Có \(5.5.4.3.2=600\) số thỏa mãn.

b, TH1: \(e=0\)

a có 5 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

\(\Rightarrow\) Có \(5.4.3.2=120\) số thỏa mãn.

TH2: \(e\ne0\)

a có 5 cách chọn.

e có 2 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

\(\Rightarrow\) Có \(5.4.3.2.2=240\) số thỏa mãn.

Vậy có \(120+240=360\) số tự nhiên thỏa mãn yêu cầu bài toán.

c, TH1: \(e=0\Rightarrow\) có 120 số thỏa mãn.

TH2: \(e=5\)

a có 4 cách chọn.

b có 4 cách chọn.

c có 3 cách chọn.

d có 2 cách chọn.

\(\Rightarrow\) Có \(4.4.3.2=96\) số thỏa mãn.

Vậy có \(120+96=216\) số tự nhiên thỏa mãn yêu cầu bài toán.

17 tháng 5 2016

Ta "dán" 2 chữ số 3 và 3 liền với nhau thành chữ số kép. Có hai cách "dán" (23 hoặc 32). Bài toán trở thành: có 5 chữ số 0,1,4,5, số kép. Hỏi có thể lập được bao nhiêu số tự nhiên mỗi số có 5 chữ số khác nhau.

Ta giải bằng quy tắc nhân như sau:

Bước 1: Dán 2 số 2 và 3 với nhau. Có \(n_1\) = 2 cách

Bước 2: Số hàng vạn có \(n_2\) = 4 cách chọn (trừ số 0)

Bước 3: Số hàng nghìn có \(n_3\) = 4 cách chọn

Bước 4: Số hàng trăm có \(n_4\) = 3 cách chọn

Bước 5: Số hàng chực có \(n_5\) = 2 cách chọn

Bước 6: Số hàng đơn vị có \(n_6\) = 1 cách chọn

Theo quy tắc nhân số các số cần chọn là

                     n = \(n_1\)\(n_2\)\(n_3\)\(n_4\)\(n_5\)\(n_6\) = 2.4.4.3.2.1 = 192

Vậy có 192 số cần tìm.

25 tháng 2 2019

Gọi tập hợp E = {0,1,2,3,4,5}

c) Số tự nhiên có 3 chữ số có dạng

Có ba cách chọn chữ số c ( vì c ∈ {0,2,4}).

Ứng với mỗi cách chọn c , có 6 cách chọn chữ số b (vì b ∈ E)

ứng với mỗi cách chọn c, b có 5 cách chọn chữ số a (vì a ∈ E và a≠ 0)

Áp dụng quy tắc nhân ta có 3*6*5 = 90 số có 3 chữ số.

Vì vậy đáp án là B

30 tháng 7 2016

Ta có 5 cách chọn hàng chục và bốn cách chọn hàng đơn vị nên ta có 4*5=20 số

30 tháng 7 2016

chỉnh hượp chập hai của 5

 

7 tháng 11 2018

Đặt y=23, xét các số  trong đó a;b;c;d;e đôi một khác nhau và thuộc tập {0;1;y;4;5}.

Khi đó có 4 cách chọn a; 4 cách chọn b; 3 cách chọn c; 2 cách chọn d và 1 cách chọn e.

Theo quy tắc nhân có 4.4.3.2=96 số

Khi ta hoán vị  trong y ta được hai số khác nhau

Nên có 96.2=192 số thỏa yêu cầu bài toán.

  Chọn A.

16 tháng 11 2017

Đáp án A

Gọi số cần tìm có dạng G5n31G5PJXRU.png

Chọn a : có 2 cách

Chọn b, c : có XVFLu8NzqdgY.pngcách

Vậy có 7qqb7zuTj8Im.pngsố.

18 tháng 10 2021

Là dao