K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 giờ trước (17:30)

1: Xét (O) có

ΔADB nội tiếp

AB là đường kính

Do đó; ΔADB vuông tại D

=>AD⊥MB tại D

Xét tứ giác ADKH có \(\hat{ADK}+\hat{AHK}=90^0+90^0=180^0\)

nên ADKH là tứ giác nội tiếp

2: Xét (O) có

\(\hat{EDB};\hat{EAB}\) là các góc nội tiếp chắn cung EB

=>\(\hat{EDB}=\hat{EAB}\)

\(\hat{EAB}=\hat{HDB}\) (ADKH nội tiếp)

nên \(\hat{HDB}=\hat{EDB}\)

=>DB là phân giác của góc EDH

3: Gọi N là giao điểm của CB và AM

Ta có: CH⊥AB

MA⊥BA

Do đó: CH//MA

=>CH//AN

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>CA⊥CB tại C

=>CA⊥NB tại C

=>ΔACN vuông tại C

Xét (O) có

MA,MC là các tiếp tuyến

DO đó: MA=MC

=>ΔMAC cân tại M

Ta có: \(\hat{MAC}+\hat{MNC}=90^0\) (ΔACN vuông tại C)

\(\hat{MCA}+\hat{MCN}=\hat{ACN}=90^0\)

\(\hat{MAC}=\hat{MCA}\) (ΔMAC cân tại M)

nên \(\hat{MNC}=\hat{MCN}\)

=>MC=MN

mà MC=MA

nên MN=MA(1)

Xét ΔBMA có KH//MA

nên \(\frac{KH}{MA}=\frac{BK}{BM}\left(2\right)\)

Xét ΔBMN có KC//MN

nên \(\frac{KC}{MN}=\frac{BK}{BM}\left(3\right)\)

Từ (1),(2),(3) suy ra KC=KH

=>K là trung điểm của CH

13 giờ trước (17:46)
1. Chứng minh tứ giác ADKH nội tiếp:
  • \(\angle A D B = 9 0^{\circ}\) (góc nội tiếp chắn nửa đường tròn)
  • \(C H \bot A B\) nên \(\angle A H K = 9 0^{\circ}\)
  • Xét tứ giác ADKH có \(\angle A D B + \angle A H K = 9 0^{\circ} + 9 0^{\circ} = 18 0^{\circ}\)
  • Vậy tứ giác ADKH nội tiếp (tổng hai góc đối bằng 180 độ).
2. Chứng minh DB là phân giác của góc HDE:
  • Xét tứ giác ADKH nội tiếp => \(\angle D A H = \angle D K H\) (cùng chắn cung DH)
  • \(\angle D K H = \angle B K C\) (đối đỉnh)
  • \(\angle B K C = \angle C B H\) (do tam giác CBK cân tại C, vì CK = CB)
  • \(\angle C B H = \angle D A B\) (cùng phụ với góc ABD)
  • => \(\angle D A H = \angle D A B\)
  • Mà \(\angle D A H = \angle D E H\) (cùng chắn cung AD)
  • => \(\angle D A B = \angle D E H\)
  • => \(\angle E D B = \angle H D B\) (DB nằm giữa DE và DH)
  • Vậy DB là phân giác của góc HDE.
3. Chứng minh K là trung điểm của CH:
  • Gọi I là giao điểm của AC và MB.
  • Xét tam giác MAC có MA = MC (tính chất hai tiếp tuyến cắt nhau) => tam giác MAC cân tại M => \(\angle M A C = \angle M C A\)
  • \(\angle C A B = \angle A C B\) (tam giác ABC cân tại C)
  • => \(\angle M A I = \angle A C I\)
  • => Tứ giác AICB nội tiếp
  • => \(\angle A I C = 9 0^{\circ}\) => \(A C \bot M B\) tại I.
  • Xét tam giác CHA có CI vừa là đường cao, vừa là đường trung tuyến (do \(A C \bot M B\) tại I và I là trung điểm của MB)
  • => Tam giác CHA cân tại C => CI là đường trung trực của AH.
  • => K là trung điểm của CH.
23 tháng 8 2021

hôm qua mình làm B rồi nhé 

\(P=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\frac{\sqrt{x}}{x+\sqrt{x}}\)ĐK : x > 0 

\(=\frac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}:\frac{\sqrt{x}}{x+\sqrt{x}}=\sqrt{x}+1+\frac{1}{\sqrt{x}}\)

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{3}{\sqrt{x}+1}-\frac{6\sqrt{x}-4}{x-1}\)Với x >= 0 ; \(x\ne1\)

\(=\frac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{x-1}=\frac{x-2\sqrt{x}+1}{x-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

23 tháng 8 2021

CẢM MƠN ANH TÚ NHIỀU Ạ

28 tháng 7 2020

\(4\le\left(a^2+b^2\right)\left(4-a^2-b^2\right)\)\(\Leftrightarrow\)\(\left(a^2+b^2-2\right)^2\le0\)

\(\Rightarrow\)\(b=\sqrt{2-a^2}\)

có : \(a\le\frac{1}{2}a^2+\frac{1}{2}\)

\(M=\frac{1}{a}+\frac{1}{\sqrt{2-a^2}}-a-\sqrt{2-a^2}\ge\frac{1}{a}+\frac{2}{3-a^2}-\frac{a^2}{2}-\frac{1}{2}-\frac{3-a^2}{2}\)

\(\ge\frac{2}{a^2+1}+\frac{2}{3-a^2}-2\ge\frac{8}{a^2+1+3-a^2}-2=0\)

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

23 tháng 10 2020

Ta có: \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)

Đặt \(\cot\alpha=t\)thì \(\tan\alpha=\frac{1}{t}\)

Khi đó \(B=\frac{1}{1+\frac{1}{t}}+\frac{1}{1+t}=\frac{t}{t+1}+\frac{1}{1+t}=1\)

24 tháng 10 2020

1+tan a=1+sina/cosa = sina+cosa/cosa

1+cota=sina+cosa/sina

=>B=1.

10 tháng 10 2021

\(\sqrt{3x^2-12x+21}+\sqrt{5x^2-20x+24}=-2x^2+8x-3\)

\(\left(\sqrt{3x^2-12x+21}-3\right)+\left(\sqrt{5x^2-20x+24}-2\right)=-2x^2+8x-8\)

\(\frac{3x^2-12x+21-9}{\sqrt{3x^2-12x+21}+3}+\frac{5x^2-20x+24-4}{\sqrt{5x^2-20x+24}+3}=\left(x-2\right)\left(4-2x\right)\)

\(\frac{3x^2-12x+12}{\sqrt{3x^2-12x+21}+3}+\frac{5x^2-20x+20}{\sqrt{5x^2-20x+24}+3}=\left(x-2\right)\left(4-2x\right)\)

\(\frac{\left(x-2\right)\left(3x-6\right)}{\sqrt{3x^2-12x+21}+3}+\frac{\left(x-2\right)\left(5x-10\right)}{\sqrt{5x^2-20x+24}+3}=\left(x-2\right)\left(4-2x\right)\)

\(\left(x-2\right)\left(\frac{3x-6}{\sqrt{3x^2-12x+21}+3}+\frac{5x-10}{\sqrt{5x^2-20x+24}}-4+2x\right)=0\)

\(\orbr{\begin{cases}x=2\left(TM\right)\\\frac{3x-6}{\sqrt{3x^2-12x+21}+3}+\frac{5x-10}{\sqrt{5x^2-20x+24}}-4+2x\ne0\left(KTM\right)\end{cases}}\)

vậy pt có nghiệm duy nhất là 2

10 tháng 10 2021

Mà bạn ơi, tại sao cái về sau khác 0 được vậy bạn ? Sao mình không đặt (x-2)^2 luôn nhỉ? Dù sao cũng cảm ơn ha!

28 tháng 9 2021

Anh/ chị/ bạn nào biết làm lặn vào giúp em với ạ!

28 tháng 9 2021

\(A=\frac{x^3+2x^2+4x}{x^2+2x}-\frac{4x}{x-2}-\frac{12x+8}{4-x^2}\)ĐK : \(x\ne0;\pm2\)

\(=\frac{x^2+2x+4}{x+2}-\frac{4x}{x-2}-\frac{12x+8}{4-x^2}\)

\(=\frac{\left(x^2+2x+4\right)\left(x-2\right)-4x\left(x+2\right)+12x+8}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^3-8-4x^2-8x+12x+8}{\left(x+2\right)\left(x-2\right)}=\frac{x^3-4x^2+4x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{x+2}\)

5 tháng 7 2018

Đặt x = a - b ; y = b - c ; z = c - a thì x + y + z = a - b + b - c + c - a = 0

Ta có : \(\sqrt{\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{y})^2-2(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx})\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2-2\frac{x+y+z}{xyz}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2=(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})^2(đpcm)\)

Chúc bạn học tốt

24 tháng 7 2020

Câu c) 

Ta có: AD là phân giác ^BAC 

=> ^BAD = ^ DAC = ^BAC : 2 = 90o : 2 = 45o 

Xét \(\Delta\)AIB có: ^AIB = 90o; ^BAI = ^BAD = 45o 

=> ^ABI = 45o 

Xét \(\Delta\)BAM vuông tại A có: ^ABM = ^ABI = 45o => ^AMB = 45o => \(\Delta\)ABM vuông cân 

có AI là đường cao => AI là đường trung tuyến => I là trung điểm BM 

=> BM = 2 BI 

Xét \(\Delta\)ABM vuông tại A có AI là đương cao => AB = BI.BM = BI.2BI = 2BI2 

Xét \(\Delta\)ABC vuông tại A có: AH là đường cao: => AB= BH.BC 

=> BH.BC = 2BI2