
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ban đầu bạn phân tích từ sin2x - 2 ≠ 0 thành sinx.cosx ≠ 1.
Sao đến cuối bạn lại biến sinx.cosx ≠ 1 thành sin2x ≠ \(\frac{1}{2}\)

Cộng đồng học tập online | Học trực tuyến
Lần sau có bài em đăng trong link này để đc các bạn giúp đỡ nhé!
+)\(y=\frac{1}{\sqrt{1+\cos4x}}\)
ĐKXĐ: \(\cos4x+1>0\Leftrightarrow\cos4x>-1\Leftrightarrow\cos4x\ne-1\)
\(\Leftrightarrow4x\ne\pi+k2\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\), k thuộc Z
TXĐ: \(ℝ\backslash\left\{\frac{\pi}{4}+\frac{k\pi}{2}\right\}\), k thuộc Z
+) \(y=\sqrt{\tan x-\sqrt{3}}\)
ĐKXĐ: \(\hept{\begin{cases}\tan x-\sqrt{3}\ge0\\x\ne\frac{\pi}{2}+k\pi\end{cases}\Leftrightarrow\hept{\begin{cases}\tan x\ge\tan\frac{\pi}{3}\\x\ne\frac{\pi}{2}+k\pi\end{cases}\Leftrightarrow}\frac{\pi}{3}+k\pi\le x< \frac{\pi}{2}+k\pi}\)
TXĐ:...

1.
ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow sinx.cosx\ne0\)
\(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\frac{k\pi}{2}\)
2.
ĐKXĐ: \(\left\{{}\begin{matrix}sinx\ne0\\sin3x\ne1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne k\pi\\x\ne\frac{\pi}{6}+\frac{k2\pi}{3}\end{matrix}\right.\)
3.
Do \(sin6x< 2\) với mọi x nên hàm số xác định trên R
4.
Hàm số xác định khi và chỉ khi \(cosx\ge1\Leftrightarrow cosx=1\)
\(\Leftrightarrow x=k2\pi\)

Câu 1. Hàm số xác định \(\Leftrightarrow\cos x\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k2\pi\)
Câu 2. có \(-1\le\sin3x\le1\Leftrightarrow2\le\sin3x+3\le4\)
tập giá trị của hàm số : [2;4]

1.
ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
2.
ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)
3.
ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)
\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

a) \(D=R\backslash\left\{1\right\}\)
b) \(y\left(x\right)\) xác định khi:
\(cos\dfrac{x}{3}\ne0\Leftrightarrow\dfrac{x}{3}\ne\dfrac{\pi}{2}+k\pi\)
\(\Leftrightarrow x\ne\dfrac{3\pi}{2}+k3\pi\)
\(D=R\backslash\left\{\dfrac{3\pi}{2}+k3\pi\right\};k\in Z\)
c) \(y\left(x\right)\) xác định khi:
\(sin2x\ne0\Leftrightarrow2x\ne k\pi\)\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\).
\(D=R\backslash\left\{\dfrac{k\pi}{2}\right\};k\in Z\)
d) \(y\left(x\right)\) xác định khi:
\(x^2-1\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\).
\(D=R\backslash\left\{1;-1\right\}\)
ĐKXĐ: \(1-cos^2x<>0\)
=>\(cos^2x<>1\)
=>\(\sin^2x<>0\)
=>sinx<>0
=>\(x<>k\pi\)
=>TXĐ là D=R\{k\(\pi\) ;k∈Z}
chịu =\