
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: \(=\dfrac{2\cdot136-28\cdot6+62\cdot3}{30}\cdot\dfrac{7}{8}=\dfrac{290}{30}\cdot\dfrac{7}{8}=\dfrac{29}{3}\cdot\dfrac{7}{8}=\dfrac{203}{24}\)
b: \(=\dfrac{3}{11}\cdot\dfrac{4}{11}+\dfrac{3}{13}\cdot\dfrac{4}{11}-\dfrac{1}{13}\)
\(=\dfrac{4}{11}\left(\dfrac{3}{11}+\dfrac{3}{13}\right)-\dfrac{1}{13}\)
\(=\dfrac{4}{11}\cdot\dfrac{72}{143}-\dfrac{1}{13}=\dfrac{167}{1573}\)

\(a)A=\frac{24\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}+\frac{3}{11}+\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}+\frac{9}{13}+\frac{9}{7}+\frac{9}{11}+9}\)
\(=\frac{(23+1)\cdot47-23}{24+47-23}\cdot\frac{3+\frac{3}{7}+\frac{3}{11}+\frac{3}{1001}+\frac{3}{13}}{\frac{9}{1001}+\frac{9}{13}+\frac{9}{7}+\frac{9}{11}+9}=\frac{47-23+24}{47-23+24}\cdot\frac{3(1+\frac{1}{7}+\frac{1}{11}+\frac{1}{1001}+\frac{1}{13})}{3(3+\frac{3}{1001}+\frac{3}{13}+\frac{3}{7}+\frac{3}{11})}\)
\(=\frac{1+\frac{1}{7}+\frac{1}{11}+\frac{1}{1001}+\frac{1}{13}}{3+\frac{3}{1001}+\frac{3}{13}+\frac{3}{7}+\frac{3}{11}}=\frac{1+\frac{1}{1001}+\frac{1}{13}+\frac{1}{7}+\frac{1}{11}}{3(1+\frac{1}{1001}+\frac{1}{13}+\frac{1}{7}+\frac{1}{11})}=\frac{1}{3}\)
\(b)\)\(\text{Đặt A = }1+2+2^2+2^3+...+2^{2012}\)
\(2A=2(1+2^2+2^3+...+2^{2012})\)
\(2A=2+2^2+2^3+...+2^{2013}\)
\(2A-A=(2+2^2+2^3+2^4+...+2^{2013})-(1+2+2^2+2^3+...+2^{2012})\)
\(\Rightarrow A=2^{2013}-1\)
\(\text{Quay lại bài toán,ta có :}\)
\(B=\frac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}=\frac{2^{2013}-1}{2^{2014}-2}=\frac{2^{2013}-1}{2(2^{2013}-1)}=\frac{1}{2}\)

bài 1b)
\(8\frac{1}{14}-6\frac37\)
C1:\(\frac{113}{14}-\frac{45}{7}\) =\(\frac{113}{14}-\frac{90}{14}=\frac{23}{14}\)
C2:\(8\frac{1}{14}-6\frac37=\left(8-6\right)+\left(\frac{1}{14}-\frac37\right)=2+\left(\frac{1}{14}-\frac{6}{14}\right)\)
\(=2+\frac{-5}{14}=\frac{28}{14}-\frac{5}{14}=\frac{23}{14}\)
bài 1 c)\(7-3\frac67\)
C1:\(\) \(7-3\frac67=7-\frac{27}{7}=\frac{49}{7}-\frac{27}{7}=\frac{22}{7}\)
C2:\(7-3\frac67=\left(7-3\right)-\frac67=4-\frac67=\frac{28}{7}-\frac67=\frac{22}{7}\)

mk muốn xem bài của mk đúng hay sai thôi !
chứ làm thì mk làm xong rồi !

a,Gọi tổng trên là A.
Xét \(\frac{4}{5}-\frac{4}{7}=\frac{8}{35};...;\frac{4}{59}-\frac{4}{61}=\frac{8}{3599}\)=>\(A=\frac{1}{2}.\left(\frac{4}{5}-\frac{4}{7}+\frac{4}{7}-\frac{4}{9}+...+\frac{4}{59}-\frac{4}{61}\right)\)\(=\frac{1}{2}.\left(\frac{4}{5}-\frac{4}{61}\right)=\frac{1}{2}.\frac{224}{305}=\frac{112}{305}\)
b,Gọi tổng trên là B
Theo đề bài ta có:\(B=\frac{24.47-23}{24+47.23}.\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}\)=\(\frac{\left(23+1\right).47-23}{24+47.23}.\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}=\frac{47.23+24}{24+47.23}.\frac{3.\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}{3.\left(3+\frac{3}{1001}-\frac{3}{13}+\frac{3}{7}-\frac{3}{11}\right)}\)\(=\frac{1+\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}}{3+\frac{3}{1001}-\frac{3}{13}+\frac{3}{7}-\frac{3}{11}}=\frac{1+\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}}{3.\left(1+\frac{1}{1001}-\frac{1}{13}+\frac{1}{7}-\frac{1}{11}\right)}=\frac{1}{3}\)
\(2\left(\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{59.61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{59}-\frac{1}{61}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{61}\right)=2\left(\frac{61-5}{305}\right)=2.\frac{56}{305}=\frac{112}{305}\)

\(A=\frac{24.47-23}{24+47-23}.\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{\frac{9}{1001}-\frac{9}{13}+\frac{9}{7}-\frac{9}{11}+9}\)
\(A=\frac{1105}{28}.\)\(\frac{3+\frac{3}{7}-\frac{3}{11}+\frac{3}{1001}-\frac{3}{13}}{9+\frac{9}{7}-\frac{9}{11}+\frac{9}{1001}-\frac{9}{13}}\)
\(A=\frac{1105}{28}.\frac{3.\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}{9.\left(1+\frac{1}{7}-\frac{1}{11}+\frac{1}{1001}-\frac{1}{13}\right)}\)
\(A=\frac{1105}{28}.\frac{3}{9}\)
\(A=\frac{1105}{84}\)
b)\(M=\frac{1+2+2^2+2^3+...+2^{2012}}{2^{2014}-2}\)
Đặt \(A=1+2+2^2+2^3+...+2^{2012}\)
Suy ra \(2.A=2+2^2+2^3+2^4+...+2^{2013}\)
Khi đó \(2.A-A=2^{2013}-1\)hay \(A=2^{2013}-1\)
Do đó : \(M=\frac{A}{2^{2014}-2}=\frac{2^{2013}-1}{2^{2014}-2}=\frac{1}{2}\)
Vậy \(M=\frac{1}{2}\)
\(\frac{7}{24}+\left(-\frac{3}{40}\right)=\frac{35}{120}-\frac{9}{120}=\frac{26}{120}\)
\(\frac{3}{11}\cdot\left(-\frac{3}{62}\right)-\frac{3}{62}^{}\cdot\frac{9}{11}=\frac{3}{11}+\frac{9}{11}\cdot\left(-\frac{3}{62}\right)=1\cdot\left(-\frac{3}{62}\right)=-\frac{3}{62}\)
a,\(\frac{7}{24}\) -\(\frac{3}{40}\)
= \(\frac{280}{960}\) -\(\frac{72}{960}\)
= \(\frac{208}{960}\)
= \(\frac{13}{60}\)
b,\(\frac{13}{11}\) .(\(-\frac{3}{62}\)) -\(\frac{3}{62}\) .\(\frac{9}{11}\)
= \(-\frac{39}{682}\) -\(\frac{27}{682}\)
= \(\frac{-3}{31}\)