Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài 1
\(a,\frac{3}{5}+\left(-\frac{1}{4}\right)=\frac{7}{20}\)
\(b,\left(-\frac{5}{18}\right)\cdot\left(-\frac{9}{10}\right)=\frac{1}{4}\)
\(c,4\frac{3}{5}:\frac{2}{5}=\frac{23}{5}\cdot\frac{5}{2}=\frac{23}{2}\)
Bài 2
\(a,\frac{12}{x}=\frac{3}{4}\Rightarrow3x=12\cdot4\)
\(\Rightarrow3x=48\)
\(\Rightarrow x=16\)
\(b,x:\left(-\frac{1}{3}\right)^3=\left(-\frac{1}{3}\right)^2\)
\(\Rightarrow x=\left(-\frac{1}{3}\right)^2\cdot\left(-\frac{1}{3}\right)^3=\left(-\frac{1}{3}\right)^5\)
\(\Rightarrow x=-\frac{1}{243}\)
\(c,-\frac{11}{12}\cdot x+0,25=\frac{5}{6}\)
\(\Rightarrow-\frac{11}{12}x=\frac{5}{6}-\frac{1}{4}=\frac{7}{12}\)
\(\Rightarrow x=\frac{7}{12}:\left(-\frac{11}{12}\right)\)
\(\Rightarrow x=-\frac{7}{11}\)
\(d,\left(x-1\right)^5=-32\)
\(\left(x-1\right)^5=-2^5\)
\(x-1=-2\)
\(x=-2+1=-1\)
Bài 3
\(\left|m\right|=-3\Rightarrow m\in\varnothing\)
Bài 3
Gọi 3 cạnh của tam giác lần lượt là a;b;c ( a,b,c>0)
Ta có
\(a+b+c=13,2\)
\(\frac{a}{3};\frac{b}{4};\frac{c}{5}\)
Ap dụng tính chất DTSBN ta có
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{13,2}{12}=\frac{11}{10}\)
\(\hept{\begin{cases}\frac{a}{3}=\frac{11}{10}\\\frac{b}{4}=\frac{11}{10}\\\frac{c}{5}=\frac{11}{10}\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{33}{10}\\b=\frac{44}{10}=\frac{22}{5}\\c=\frac{55}{10}=\frac{11}{2}\end{cases}}\)
Vậy 3 cạnh của tam giác lần lượt là \(\frac{33}{10};\frac{22}{5};\frac{11}{2}\)
a)\(\frac{3}{5}+\left(-\frac{1}{4}\right)\)
\(=\frac{3}{5}-\frac{1}{4}\)
\(=\frac{12}{20}-\frac{5}{20}=\frac{7}{20}\)
b)\(\left(-\frac{5}{18}\right)\left(-\frac{9}{10}\right)\)
\(=\frac{\left(-5\right)\left(-9\right)}{18.10}\)
\(=\frac{\left(-1\right)\left(-1\right)}{2.2}=\frac{1}{4}\)
c)\(4\frac{3}{5}:\frac{2}{5}\)
\(=\frac{23}{5}:\frac{2}{5}\)
\(=\frac{23}{5}.\frac{5}{2}\)
\(=\frac{23.1}{1.2}=\frac{23}{2}\)
1/
a)\(\frac{12}{x}=\frac{3}{4}\)
\(\Rightarrow x.3=12.4\)
\(\Rightarrow x.3=48\)
\(\Rightarrow x=48:3=16\)
b)\(x:\left(\frac{-1}{3}\right)^3=\left(\frac{-1}{3}\right)^2\)
\(x=\left(\frac{-1}{3}\right)^2.\left(\frac{-1}{3}\right)^3\)
\(x=\frac{\left(-1\right)^2}{3^2}.\frac{\left(-1\right)^3}{3^3}\)
\(x=\frac{1}{9}.\frac{-1}{27}=-\frac{1}{243}\)

theo tính chất đường phân giác ta cóANBN =ACBC ⇔AN+BNBN =AC+BCBC
BN=AB.BCAC+BC .tương tự suy ra CM=AC.BCAB+BC
giả sử AB≥AC⇒BN≥CMtheo kết quả vừa tính được
có AB≥AC⇒^B≤^C⇔{
^B1≤^C1 |
^B2≤^C2 |
chứng minh được tam giác CND cân theo giả thiết (BNDM là hình bình hành )^D12=^C23
mà ^B2=^D1≤^C2⇒^D2≥^C3⇒CM≥DM=BN
⇒{
BN≥CM |
BN≤CM |
⇒BN=CM⇒AB=AC⇒tam giác ABC cân
trường hợp AB≤AC làm tương tự

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)
Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3
\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)
\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)
\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

Bài 4 nha
Áp dụng BĐT cô si ta có
\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)
Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1
Đây là Toán lớp 7 nhé, không phải toán lớp 1
Xét ΔABC có \(BA^2+BC^2=AC^2\)
nên ΔBAC vuông tại B
Bài toán: Chứng minh tam giác ABC vuông
Đề bài:
Cho tam giác ABC với các độ dài cạnh:
Chứng minh tam giác ABC là tam giác vuông.
Giải:
Bước 1: Nhận xét về độ dài các cạnh
Ta có ba cạnh: 5, 12, 13.
Bước 2: Áp dụng định lý Pythagore
Định lý Pythagore phát biểu rằng trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
Kiểm tra xem có thỏa mãn:
\(A C^{2} A B^{2} + B C^{2}\)Thay số:
\(13^{2} = 5^{2} + 12^{2} 169 = 25 + 144 169 = 169\)Điều này đúng.
Bước 3: Kết luận
Vì bình phương cạnh AC bằng tổng bình phương hai cạnh còn lại, nên theo định lý Pythagore, tam giác ABC là tam giác vuông, với góc vuông đối diện cạnh AC.
Nếu bạn cần mình giải thích thêm hoặc vẽ hình minh họa, hãy cho mình biết nhé!