
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A = \(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+...+ \(\dfrac{1}{1+2+...+2004}\)+ \(\dfrac{2}{2025}\)
A = \(\dfrac{1}{\left(1+3\right).3:2}\)+\(\dfrac{1}{\left(4+1\right).4:2}\)+...+ \(\dfrac{1}{\left(2024+1\right).2024:2}\)+\(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3.4}\)+\(\dfrac{2}{4.5}\)+...+\(\dfrac{2}{2024.2025}\)+ \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{2024.2025}\)) + \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+...+ \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3}\) - \(\dfrac{2}{2025}\) + \(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3}\)

1. 25 . 3x-3 = 2025
3x-3 = 2025 : 25
3x-3 = 81
3x-3 = 34
=> x - 3 = 4
x = 4 + 3
x = 7
Vậy x = 7
2. Chứng minh:
M = 2 + 22 + 23 +...+298
M = ( 2 + 22 ) + ( 23 + 24 ) +...+ ( 297 + 298 )
M = 2.( 1 + 2 ) + 23.( 1 + 2 ) +...+ 297.( 1 + 2 )
M = 2.3 + 23.3 +...+ 297.3 \(⋮\)3
=> M\(⋮\)3

Nếu Cơ Số Ở Dạng Lập Phương Được Gấp Đôi
=> Đáp Án nhân cho 8
Ta có : A = 2025
=> B = 2025 * 8 =16200

ta nhận xét rằng mỗi số hạng trong tổng \(M\) đều là số dương. Do đó, \(M > 0\).
Áp dụng bất đẳng thức này cho từng số hạng của \(M\), ta có: \(M = \sum_{k = 1}^{2025} \frac{k}{\left(\right. k + 1 \left.\right)^{3}} < \sum_{k = 1}^{2025} \frac{1}{\left(\right. k + 1 \left.\right)^{2}}\)
Đặt \(j = k + 1\). Khi \(k = 1\) thì \(j = 2\), và khi \(k = 2025\) thì \(j = 2026\). Do đó, \(\sum_{k = 1}^{2025} \frac{1}{\left(\right. k + 1 \left.\right)^{2}} = \sum_{j = 2}^{2026} \frac{1}{j^{2}}\).
Giá trị của \(\pi \approx 3.14159\), nên \(\pi^{2} \approx 9.8696\). \(\frac{\pi^{2}}{6} \approx \frac{9.8696}{6} \approx 1.6449\). Vậy \(\sum_{j = 2}^{2026} \frac{1}{j^{2}} < 1.6449 - 1 = 0.6449\).
Do đó, \(M < 0.6449\).
\(=\frac{1}{2^{3}}+\frac{2}{3^{3}}+\frac{3}{4^{3}}+...+\frac{2025}{202 6^{3}}\) \(M > \frac{1}{2^{3}} = \frac{1}{8} = 0.125\)
Ta có \(0.125 < M < 0.6449\). Vì \(M\) nằm trong khoảng \(\left(\right. 0.125 , 0.6449 \left.\right)\), nên \(M\) không thể là một số tự nhiên
Do đó, giá trị của \(M\) không phải là số tự nhiên.
đây mik cx ko chắc chắn lắm

\(2^3+4^3+6^3+...+18^3=\left(1.2\right)^3+\left(2.2\right)^3+...+\left(2.9\right)^3\)
=\(2^3\left(1^3+2^3+...+9^3\right)\)
=2^3 .2025
=9.2025
=18225
\(A=2+2^2+2^3+...+2^{10}.\)
\(=>2A=2^2+2^3+...+2^{11}.\)
=>2A-A=A= 211-2
Vậy A+2=211

Ta có :
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+3}+...+\frac{1}{1+2+3+...+99}\)
\(A=\frac{1}{\frac{2\left(2+1\right)}{2}}+\frac{1}{\frac{3\left(3+1\right)}{2}}+\frac{1}{\frac{4\left(4+1\right)}{2}}+...+\frac{1}{\frac{99\left(99+1\right)}{2}}\)
\(A=\frac{2}{2\left(2+1\right)}+\frac{2}{3\left(3+1\right)}+\frac{2}{4\left(4+1\right)}+...+\frac{2}{99\left(99+1\right)}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\)
\(A=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(A=2.\frac{49}{100}\)
\(A=\frac{49}{50}\)
Lại có :
\(\frac{1}{2^2}>\frac{1}{2.3}\)
\(\frac{1}{3^2}>\frac{1}{3.4}\)
\(\frac{1}{4^2}>\frac{1}{4.5}\)
\(............\)
\(\frac{1}{49^2}>\frac{1}{49.50}\)
\(\Rightarrow\)\(B=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{49^2}>1+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(B>1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(B>1+\frac{1}{2}-\frac{1}{50}\)
\(B>1+\frac{12}{25}=\frac{37}{25}=\frac{74}{50}>\frac{49}{50}=A\)
\(\Rightarrow\)\(B>A\)
Vậy \(A< B\)
Chúc bạn học tốt ~
A = 1 + \(\frac12\) + \(\frac{1}{2^2}\) + ... + \(\frac{1}{2^{2025}}\)
2A = 2 + 1 + \(\frac12\) + ...+ \(\frac{1}{2^{2024}}\)
2A - A = 2 + 1 + \(\frac12+\cdots+\frac{1}{2^{2024}}\) - 1 - \(\frac12-\ldots-\frac{1}{2^{2025}}\)
A = (2 - \(\frac{1}{2^{2025}}\)) + (1 - 1) + ... + (\(\frac{1}{2^{2024}}\) - \(\frac{1}{2^{2024}}\))
A = 2 - \(\frac{1}{2^{2025}}\)
Để tính giá trị của biểu thức:
\(A=1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\ldots+\frac{1}{2^{2025}}\)Ta nhận thấy rằng đây là một dãy số hình học có công thức tổng quát:
\(A = \sum_{k = 0}^{2025} \frac{1}{2^{k}}\)Đây là một tổng của một dãy số hình học có công thức tổng quát là:
\(S_{n} = \frac{a \left(\right. 1 - r^{n} \left.\right)}{1 - r}\)Trong đó:
Áp dụng công thức tổng dãy số hình học:
\(A = \frac{1 \cdot \left(\right. 1 - \left(\left(\right. \frac{1}{2} \left.\right)\right)^{2026} \left.\right)}{1 - \frac{1}{2}}\) \(A = \frac{1 - \frac{1}{2^{2026}}}{\frac{1}{2}}\) \(A = 2 \left(\right. 1 - \frac{1}{2^{2026}} \left.\right)\)Vậy, kết quả là:
\(A = 2 - \frac{2}{2^{2026}}\)Kết quả này có thể viết dưới dạng gần đúng là:
\(A\approx2(\text{v}\overset{ˋ}{\imath}\frac{2}{2^{2026}}\text{r}\overset{ˊ}{\hat{\text{a}}}\text{t nh}ỏ)\)Kết luận:
Giá trị của \(A\) là:
\(A = 2 - \frac{2}{2^{2026}}\)Hoặc xấp xỉ \(2\).