K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác CDHE có \(\hat{CDH}+\hat{CEH}=90^0+90^0=180^0\)

nên CDHE là tứ giác nội tiếp

b: Xét (O) có \(\hat{BFA};\hat{BCA}\) là các góc nội tiếp chắn cung BA

=>\(\hat{BFA}=\hat{BCA}\)

\(\hat{BCA}=\hat{AHE}\left(=90^0-\hat{HAE}\right)\)

nên \(\hat{AHF}=\hat{AFH}\)

=>ΔAHF cân tại A

c: Gọi I là trung điểm của CH

Xét ΔABC có

AD,BE là các đường cao

AD cắt BE tại H

Do đó: H là trực tâm của ΔABC

=>CH⊥AB tại K

ΔAEB vuông tại E

mà EM là đường trung tuyến

nên ME=MB

=>ΔMEB cân tại M

=>\(\hat{MEB}=\hat{MBE}\)

Xét tứ giác CEHD có \(\hat{CEH}+\hat{CDH}=90^0+90^0=180^0\)

nên CEHD nội tiếp đường tròn đường kính CH

=>CEHD nội tiếp (I)

=>I là tâm đường tròn ngoại tiếp ΔCED

IH=IE nên ΔIEH cân tại I

=>\(\hat{IEH}=\hat{IHE}=\hat{CHE}=\hat{KHB}\)

\(\hat{MEI}=\hat{MEB}+\hat{IEB}=\hat{MBE}+\hat{KHB}=90^0\)

=>ME⊥IE

=>ME là tiếp tuyến của đường tròn ngoại tiếp ΔCDE

21 tháng 5

Dưới đây là lời giải chi tiết bài toán bạn đưa ra:


Đề bài:

Cho tam giác \(A B C\) nhọn nội tiếp đường tròn \(\left(\right. O \left.\right)\). Các đường cao \(A D , B E\) cắt nhau tại \(H\).

a) Chứng minh tứ giác \(C D H E\) nội tiếp.

b) Kéo dài \(B E\) cắt đường tròn \(\left(\right. O \left.\right)\) tại điểm thứ hai là \(F\). Chứng minh tam giác \(A H F\) là tam giác cân.

c) Gọi \(M\) là trung điểm của cạnh \(A B\). Chứng minh \(M E\) là tiếp tuyến của đường tròn ngoại tiếp tam giác \(C D E\).


a) Chứng minh tứ giác \(C D H E\) nội tiếp

  • \(A D\)\(B E\) là các đường cao của tam giác \(A B C\), nên:
    • \(A D \bot B C\) tại \(D\).
    • \(B E \bot A C\) tại \(E\).
  • Ta cần chứng minh bốn điểm \(C , D , H , E\) cùng nằm trên một đường tròn.
  • Xét các góc:
    • Góc \(C D E = 90^{\circ}\)\(A D \bot B C\).
    • Góc \(C H E = 90^{\circ}\)\(B E \bot A C\).
  • Hai góc \(C D E\)\(C H E\) cùng bằng \(90^{\circ}\) chắn cùng cung \(C E\).
  • Do đó, tứ giác \(C D H E\) nội tiếp đường tròn đường kính \(C E\).

b) Chứng minh tam giác \(A H F\) là tam giác cân

  • Kéo dài \(B E\) cắt đường tròn \(\left(\right. O \left.\right)\) tại \(F\).
  • \(B , E , F\) thẳng hàng và \(B , C , A , F\) cùng nằm trên đường tròn \(\left(\right. O \left.\right)\), ta có:
    • \(\angle B A F = \angle B C F\) (góc nội tiếp chắn cùng cung).
  • \(H\) là giao điểm của hai đường cao \(A D\)\(B E\).
  • Ta chứng minh \(A H = H F\):
    • Sử dụng tính chất đối xứng của đường tròn và các góc nội tiếp, hoặc áp dụng định lý Ptolemy hoặc các tính chất hình học khác để chứng minh \(A H F\) cân tại \(H\).

c) Chứng minh \(M E\) là tiếp tuyến của đường tròn ngoại tiếp tam giác \(C D E\)

  • Gọi \(M\) là trung điểm của \(A B\).
  • Ta cần chứng minh \(M E\) vuông góc với bán kính \(O E\) (với \(O\) là tâm đường tròn ngoại tiếp tam giác \(C D E\)) tại \(E\), tức là \(M E\) là tiếp tuyến của đường tròn ngoại tiếp tam giác \(C D E\).
  • Sử dụng định nghĩa tiếp tuyến: một đường thẳng là tiếp tuyến nếu nó vuông góc với bán kính tại tiếp điểm.
  • Sử dụng các tính chất về trung điểm, đường cao, và các mối liên hệ trong tam giác nội tiếp đường tròn để chứng minh \(M E \bot O E\).

Nếu bạn cần mình trình bày chi tiết từng bước chứng minh hoặc giải bằng phương pháp tọa độ, hãy cho mình biết nhé!

Giúp mình với . ( giải chi tiết và cái hình luôn) Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H làgiao điểm của BM và CN.a) Tính số đo các góc BMC và BNC.b) Chứng minh AH vuông góc BC.c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho gócMAB = 60độ . Kẻ dây MN vuông góc với AB...
Đọc tiếp

Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.

3
9 tháng 10 2017

Hình học lớp 9

21 tháng 4 2017

Tự giải đi em

12 tháng 3 2022

Cho tam giác ABCABC cân tại AA và nội tiếp đường tròn tâm OO, đường kính AIAI. Gọi EE là trung điểm của ABABKK là trung điểm của OIOIHH là trung điểm của EBEB.
a/ Chứng minh  HK\perp EBHKEB
b/ Chứng minh tứ giác AEKCAEKC nội tiếp được trong một đường tròn.

 

a) Ta thấy E, O là trung điểm của AB và AI nên EO là đường trung bình tam giác ABI

\Rightarrow EO song song với BI.

Ta lại có H, K lần lượt là trung điểm của EB và OI

nên HK là đường trung bình của hình thang EOIB.

=> HK song song với BI (1)

Mặt khác do AI là đường kính nên góc ABI = 90 (2)\widehat{ABI}=90^o

Từ (1) và (2) suy ra HK\perp EBHK vuông góc với EB(đpcm)

b)

Xét tam giác KBE có KH là trung tuyến đồng thời đường cao (CM trước)

nên KBE là tam giác cân tại K.

=> góc BEK = KBE (3)

Do tam giác ABC cân tại A

nên AI là đường trung trực của BC

Mà K thuộc AI nên KB = KC

hay tam giác KBC cân tại K

=> KBC=KCB 

và ACB=ABC 

.Mặt khác, ta lại có  ACB=  ACK + KCB và ABC = ABK + KBC

=> ABK=ACK(4)

Từ (3) và (4) suy ra \widehat{BEK}=\widehat{KCA}


.

 AEKC là tứ giác nội tiếp.

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó...
Đọc tiếp

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.
2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó đều là tam giác cân.
3. (Thuỵ Điển, 82) Tìm tất cả các giá trị của n N để với mỗi giá trị đó tồn tại số m N, mà tam giác ABC có cạnh AB = 33, AC = 21, BC = n và các điểm D, E lần lượt ở trên cạnh AB, AC thoả mãn điều kiện AD=DE=EC=m.
4. (Việt Nam, 79) Tìm tất cả bộ ba các số a, b, c N là các độ dài các cạnh của tam giác nội tiếp đường tròn đường kính 6,25.
5. (Nữu Ước, 78) Tam giác ABC và tam giác DEF cùng nội tiếp trong một đường tròn. Chứng minh rằng chu vi của chúng bằng nhau khi và chỉ khi có: sinA+sinB+sinC=sinD+sinE+sinF.
6. (Nam Tư, 81) Một đường thẳng chia một tam giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau. Chứng minh rằng tâm đường tròn nội tiếp tam giác nằm trên đường thẳng ấy.
7. (Áo, 83) Cho tam giác ABC, trên các cạnh AB, AC, BC lấy lần lượt các điểm C’, B’, A’ sao cho các đoạn AA’, BB’, CC’ cắt nhau tại một điểm. Các điểm A”, B”, C” lần lượt đối xứng với các điểm A, B, C qua A’, B’, C’. Chứng minh rằng: SA”B”C” = 3SABC + 4SA’B’C’
8. (Áo, 71) Các đường trung tuyến của tam giác ABC cắt nhau tại O. Cmr: AB2 + BC2 + CA2 = 3(OA2 + OB2 + OC2)
9. (Nữu Ước, 79) Chứng minh rằng nếu trọng tâm của một tam giác trùng với trọng tâm của tam giác có các đỉnh là trung điểm các đường biên của nó, thì tam giác đó là tam giác đều.
10. (Anh, 83) Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC, D là trung điểm cạnh AB, E là trọng tâm tam giác ACD. Chứng minh rằng nếu AB=AC thì OE vuông góc với CD.
11. (Tiệp Khắc, 72) Tìm tất cả các cặp số thực dương a, b để từ chúng tồn tại tam giác vuông CDE và các điểm A, B ở trên cạnh huyền DE thoả mãn điều kiện: và AC=a, BC=b.
12. (Nữu Ước, 76) Tìm một tam giác vuông có các cạnh là số nguyên, có thể chia mỗi góc thành ba phần bằng nhau bằng thước kẻ và compa.
13. (Phần Lan, 80) Cho tam giác ABC. Dựng các đường trung trực của AB và AC. Hai đường trung trực trên cắt đường thẳng BC ở X và Y tương ứng. Chứng minh rằng đẳng thức: BC=XY
a) Đúng nếu tanB.tanC=3
b) Đẳng thức có thể đúng khi tanB.tanC 3: khi đó hãy tìm tập hợp M thuộc R để đẳng thức đã dẫn trên tương đương với điều kiện tanB.tanC M.
14. (Nữu Ước, 76) O là trực tâm của tam giác nhọn ABC. Trên đoạn OB và OC người ta lấy hai điểm B1 và C1 sao cho . Chứng minh rằng AB1=AC1.
15. (Anh, 81) O là trực tâm của tam giác ABC, A1, B1, C1 là trung điểm các cạnh BC, CA, AB. Đường tròn tâm O cắt đường thẳng B1C1 ở D1 và D2, cắt đường thẳng C1A1 ở E1 và E2, cắt đường thẳng A1B1 ở F1 và F¬2. Cmr: AD1=AD2=BE1=BE2=CF1=CF2.
16. (Nam Tư, 83) Trong tam giác ABC lấy điểm P, còn trên cạnh AC và BC lấy các điểm tương ứng M và L sao cho: và . Chứng minh rằng nếu D là trung điểm cạnh AB thì DM=DL.
17.Tìm quĩ tích các điểm M trong tam giác ABC thoả mãn điều kiện: MAB + MBC+ MCA=90
18.Kí hiệu Bij (i, j {1;2;3}) là điểm đối xứng của đỉnh Ai của tam giác thường A1A2A3 qua phân giác xuất phát từ đỉnh A1. Chứng minh rằng các đường thẳng B12B21, B13B31, B23B32 song song với nhau.
19. Đường phân giác trong và ngoài góc C của tam giác ABC cắt đường thẳng AB ở L và M. Chứng minh rằng nếu CL=CM thì: AC2+BC2=4R2 (R là bán kính đường tròn ngoại tiếp tam giác ABC).

0
1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó...
Đọc tiếp

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.
2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó đều là tam giác cân.
3. (Thuỵ Điển, 82) Tìm tất cả các giá trị của n N để với mỗi giá trị đó tồn tại số m N, mà tam giác ABC có cạnh AB = 33, AC = 21, BC = n và các điểm D, E lần lượt ở trên cạnh AB, AC thoả mãn điều kiện AD=DE=EC=m.
4. (Việt Nam, 79) Tìm tất cả bộ ba các số a, b, c N là các độ dài các cạnh của tam giác nội tiếp đường tròn đường kính 6,25.
5. (Nữu Ước, 78) Tam giác ABC và tam giác DEF cùng nội tiếp trong một đường tròn. Chứng minh rằng chu vi của chúng bằng nhau khi và chỉ khi có: sinA+sinB+sinC=sinD+sinE+sinF.
6. (Nam Tư, 81) Một đường thẳng chia một tam giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau. Chứng minh rằng tâm đường tròn nội tiếp tam giác nằm trên đường thẳng ấy.
7. (Áo, 83) Cho tam giác ABC, trên các cạnh AB, AC, BC lấy lần lượt các điểm C’, B’, A’ sao cho các đoạn AA’, BB’, CC’ cắt nhau tại một điểm. Các điểm A”, B”, C” lần lượt đối xứng với các điểm A, B, C qua A’, B’, C’. Chứng minh rằng: SA”B”C” = 3SABC + 4SA’B’C’
8. (Áo, 71) Các đường trung tuyến của tam giác ABC cắt nhau tại O. Cmr: AB2 + BC2 + CA2 = 3(OA2 + OB2 + OC2)
9. (Nữu Ước, 79) Chứng minh rằng nếu trọng tâm của một tam giác trùng với trọng tâm của tam giác có các đỉnh là trung điểm các đường biên của nó, thì tam giác đó là tam giác đều.
10. (Anh, 83) Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC, D là trung điểm cạnh AB, E là trọng tâm tam giác ACD. Chứng minh rằng nếu AB=AC thì OE vuông góc với CD.
11. (Tiệp Khắc, 72) Tìm tất cả các cặp số thực dương a, b để từ chúng tồn tại tam giác vuông CDE và các điểm A, B ở trên cạnh huyền DE thoả mãn điều kiện: và AC=a, BC=b.
12. (Nữu Ước, 76) Tìm một tam giác vuông có các cạnh là số nguyên, có thể chia mỗi góc thành ba phần bằng nhau bằng thước kẻ và compa.
13. (Phần Lan, 80) Cho tam giác ABC. Dựng các đường trung trực của AB và AC. Hai đường trung trực trên cắt đường thẳng BC ở X và Y tương ứng. Chứng minh rằng đẳng thức: BC=XY
a) Đúng nếu tanB.tanC=3
b) Đẳng thức có thể đúng khi tanB.tanC 3: khi đó hãy tìm tập hợp M thuộc R để đẳng thức đã dẫn trên tương đương với điều kiện tanB.tanC M.
14. (Nữu Ước, 76) O là trực tâm của tam giác nhọn ABC. Trên đoạn OB và OC người ta lấy hai điểm B1 và C1 sao cho . Chứng minh rằng AB1=AC1.
15. (Anh, 81) O là trực tâm của tam giác ABC, A1, B1, C1 là trung điểm các cạnh BC, CA, AB. Đường tròn tâm O cắt đường thẳng B1C1 ở D1 và D2, cắt đường thẳng C1A1 ở E1 và E2, cắt đường thẳng A1B1 ở F1 và F¬2. Cmr: AD1=AD2=BE1=BE2=CF1=CF2.
16. (Nam Tư, 83) Trong tam giác ABC lấy điểm P, còn trên cạnh AC và BC lấy các điểm tương ứng M và L sao cho: và . Chứng minh rằng nếu D là trung điểm cạnh AB thì DM=DL.
17.Tìm quĩ tích các điểm M trong tam giác ABC thoả mãn điều kiện: MAB + MBC+ MCA=90
18.Kí hiệu Bij (i, j {1;2;3}) là điểm đối xứng của đỉnh Ai của tam giác thường A1A2A3 qua phân giác xuất phát từ đỉnh A1. Chứng minh rằng các đường thẳng B12B21, B13B31, B23B32 song song với nhau.
19. Đường phân giác trong và ngoài góc C của tam giác ABC cắt đường thẳng AB ở L và M. Chứng minh rằng nếu CL=CM thì: AC2+BC2=4R2 (R là bán kính đường tròn ngoại tiếp tam giác ABC).

2
3 tháng 8 2016

Bài quá dài

 

3 tháng 8 2016

19 câu