Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{49}}\)
\(2A-A=1-\frac{1}{2^{50}}\)
\(A=1-\frac{1}{2^{50}}\)=> A bé hơn 1
tương tự nha
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\)
\(2A=2.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{48}}+\frac{1}{2^{49}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{48}}+\frac{1}{2^{49}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{49}}+\frac{1}{2^{50}}\right)\)
\(A=1-\frac{1}{2^{50}}< 1\)

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+....+\left(\frac{1}{2}\right)^{99}\)
\(\Rightarrow2B=1+\frac{1}{2}+...+\left(\frac{1}{2^{98}}\right)\)
\(\Rightarrow B=\frac{1}{2}-\frac{1}{2^{99}}>-\frac{1}{2}>A\)
\(\Rightarrow B>A\)

a) \(4:\left(x-1\right)=\left(x-1\right):9\)
\(\frac{4}{x-1}=\frac{x-1}{9}\)
\(\left(x-1\right)^2=36\)
\(\left(x-1\right)^2=6^2\)
\(\Rightarrow x-1=6\)
\(\Rightarrow x=7\)
vậy \(x=7\)
c) \(3\frac{1}{2}:x\frac{1}{2}=5\frac{1}{3}:\frac{1}{2}.1\frac{1}{5}\)
\(\frac{7}{2}:\frac{1}{2}x=\frac{16}{3}:\frac{1}{2}.\frac{6}{5}\)
\(\frac{7}{2}:\frac{1}{2}x=\frac{64}{5}\)
\(\frac{1}{2}x=\frac{7}{2}:\frac{64}{5}\)
\(\frac{1}{2}x=\frac{35}{128}\)
\(x=\frac{35}{128}:\frac{1}{2}\)
\(x=\frac{35}{64}\)
d) \(\left|2x-3\right|=5\)
\(\Rightarrow\orbr{\begin{cases}2x-3=5\\2x-3=-5\end{cases}}\Rightarrow\orbr{\begin{cases}2x=8\\2x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
vậy \(\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
f) \(\left(2x-\frac{1}{2}\right)^2=\left(1-3x\right)^2\)
\(\Rightarrow2x-\frac{1}{2}=1-3x\)
\(\Rightarrow2x+3x=1+\frac{1}{2}\)
\(\Rightarrow5x=\frac{3}{2}\)
\(\Rightarrow x=\frac{3}{10}\)
\(\left(3-\frac{1}{2}:x\right)^2=14\)
\(\left(3-\frac{1}{2x}\right)^2=14\)
\(\frac{1}{4x^2}-2.\frac{1}{2x}.3+9=14\)
\(\frac{1}{4x^2}-\frac{3}{x}=5\)
\(\left(\frac{1}{4x}-3\right):x=5\)

y1 và y2 lần lượt bằng 8 và 6
còn x1, x2 lần lượt bằng -4 và -10
tick nhóe!
ahihi

\(1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\)
\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)(1)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\)
\(\Rightarrow2A=1+\frac{1}{2}+...+\frac{1}{2^9}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{10}}\)
Thay A vào (1)
\(\Rightarrow1-\left(1-\frac{1}{2^{10}}\right)\)
\(=1-1+\frac{1}{2^{10}}=\frac{1}{2^{10}}\)
Ta có: 210 < 211
\(\Rightarrow\frac{1}{2^{10}}>\frac{1}{2^{11}}\)(đpcm)
Kết quả của phép tính \(1 + 100000000000000000000000000000000000000000000 + 0239847472893847484948848474848484884 + \frac{1}{2}\) là:
\(1.0000000023984746 \times 10^{44}\).