K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5

Dưới đây là hướng dẫn làm bài toán tô màu bảng 4×4 với các điều kiện đã cho:


Bài toán tóm tắt

  • Bảng 4×4, mỗi ô tô màu đen hoặc trắng.
  • (i) Số ô đen trên mỗi hàng đều bằng nhau.
  • (ii) Số ô đen trên mỗi cột đều khác nhau (đôi một khác nhau).

a) Tính số ô đen trên mỗi hàng

  • Gọi số ô đen trên mỗi hàng là \(k\).
  • Vì có 4 hàng và mỗi hàng có \(k\) ô đen, tổng số ô đen trong bảng là \(4 k\).
  • Ở mỗi cột, số ô đen phải khác nhau, tức là 4 cột có 4 số đen khác nhau.
  • Vì mỗi cột có từ 0 đến 4 ô đen, và 4 số khác nhau trong 4 cột thì phải là 0,1,2,3 hoặc 1,2,3,4.
  • Tổng số ô đen theo cột là tổng 4 số đen ở các cột, tức là:
    • Nếu là 0,1,2,3 thì tổng là 6.
    • Nếu là 1,2,3,4 thì tổng là 10.
  • Tổng số ô đen tính theo hàng là \(4 k\), tính theo cột là 6 hoặc 10.
  • Do đó \(4 k = 6\) hoặc \(4 k = 10\)\(k = 1.5\) hoặc \(k = 2.5\), đều không phải số nguyên.
  • Vậy chỉ có thể là \(k = 2\) vì số ô đen trên hàng phải là số nguyên, và tổng số ô đen là \(4 \times 2 = 8\).
  • Kiểm tra tổng số ô đen theo cột: 4 số khác nhau từ 0 đến 4 có tổng bằng 8 là: 1,2,3,2 → không được vì có số 2 lặp lại.
  • Các số khác nhau có thể là 0,1,3,4 → tổng 8, đúng.
  • Vậy số ô đen trên mỗi hàng là 2.

b) Tính tổng số “cặp tốt” theo cột và theo hàng

  • “Cặp tốt” là hai ô kề nhau trên cùng hàng hoặc cùng cột có màu khác nhau.
  • Tính theo cột:
    • Mỗi cột có 4 ô, có 3 cặp kề nhau theo chiều dọc.
    • Tổng số cặp theo tất cả cột là \(4 \times 3 = 12\).
    • Để có tổng “cặp tốt” lớn nhất, màu các ô phải xen kẽ nhau, ví dụ: đen - trắng - đen - trắng hoặc trắng - đen - trắng - đen.
    • Với 4 ô, số cặp tốt tối đa theo cột là 3 (tất cả các cặp đều khác màu).
    • Tổng số cặp tốt theo tất cả các cột là \(4 \times 3 = 12\).
  • Tính theo hàng:
    • Mỗi hàng có 4 ô, có 3 cặp kề nhau theo chiều ngang.
    • Tổng số cặp theo tất cả hàng là \(4 \times 3 = 12\).
    • Tương tự, để tối đa số cặp tốt theo hàng, màu các ô trong hàng phải xen kẽ nhau.
    • Tuy nhiên, theo điều kiện (i), mỗi hàng có đúng 2 ô đen và 2 ô trắng.
    • Cách sắp xếp để có nhiều cặp tốt nhất là xen kẽ: đen - trắng - đen - trắng hoặc trắng - đen - trắng - đen.
    • Số cặp tốt tối đa theo hàng mỗi hàng là 3.
    • Tổng số cặp tốt theo tất cả hàng là \(4 \times 3 = 12\).

Kết luận:

  • a) Số ô đen trên mỗi hàng là 2.
  • b) Tổng số “cặp tốt” theo tất cả các cột có thể lớn nhất là 12.
  • Tổng số “cặp tốt” theo tất cả các hàng có thể lớn nhất là 12.

Nếu bạn muốn, mình có thể giúp bạn viết chi tiết hơn hoặc giải thích thêm!

5 tháng 2 2022

bí  maatj

Câu 1 : Làm mất căn ở mẫu biểu thức sau:\(A=\frac{1}{\sqrt{2}+\sqrt[3]{4}}\)Câu 2 Giải hệ phương trình:\(\hept{\begin{cases}\sqrt{2\left(x-y\right)}+\sqrt{x+y}=4\\\sqrt{4\left(x+y\right)}-\sqrt{2\left(x-y\right)}=2\end{cases}}\)Câu 3một người mua 60 kg sơn quét tường ở một cửa hiệu pha màu, trong kho cửa hiệu không có sơn màu xám nên chủ cửa hiệu pha hai loại sơn màu: sơn màu đen và sơn màu trắng để được sơn màu xám...
Đọc tiếp

Câu 1 : Làm mất căn ở mẫu biểu thức sau:

\(A=\frac{1}{\sqrt{2}+\sqrt[3]{4}}\)

Câu 2 Giải hệ phương trình:

\(\hept{\begin{cases}\sqrt{2\left(x-y\right)}+\sqrt{x+y}=4\\\sqrt{4\left(x+y\right)}-\sqrt{2\left(x-y\right)}=2\end{cases}}\)

Câu 3

một người mua 60 kg sơn quét tường ở một cửa hiệu pha màu, trong kho cửa hiệu không có sơn màu xám nên chủ cửa hiệu pha hai loại sơn màu: sơn màu đen và sơn màu trắng để được sơn màu xám như người mua cần. Biết thành phần của mỗi loại sơn màu như sau:

Sơn màu đen=20% bột màu đen+80% chất phụ gia

Sơn màu trắng=30% bột màu trắng+70% chất phụ gia

Sơn màu xám=5% bột màu đen+15% bột màu trắng+80% chất phụ gia.

(các thàn phần tính theo đơn vị kg)

Hỏi người chủ cửa hiệu cần pha bn kg sơn màu đen, sơn màu trắng và chất phụ gia để đáp ứng yêu cầu người mua

Câu 4:

a) Cho \(a\ge2,b\ge2.\)CMR: \(ab\ge a+b\)

b) Tìm min hàm số : \(y=|x-1|+|x-6|,x\in R\)

Câu 5

một thanh sắt dài 7m, người ta muốn cưa thanh sắt đó thành các thanh nhỏ dài 7dm và 5 dm. Hỏi mỗi thứ được bao nhiêu thanh biết rằng khi cưa xong không dư phần nào cả.

Câu 6:

Cho tam giác đều ABC nội tiếp đường tròn (O,R). Gọi D là một điểm trên cung nhỏ BC. Gọi I, K,H lần lượt là hình chiếu của D trên BC,AB,AC. CMR

a) tam giác DKB và DHC đồng dạng

b) I,K,H thẳng hàng

c) \(\frac{BC}{DI}=\frac{AB}{DK}+\frac{AC}{DH}.\)

 

 

 

1
10 tháng 1 2018

\(\frac{1}{\sqrt{2}+\sqrt[3]{4}}=\frac{\sqrt{2}-\sqrt[3]{4}}{\left(\sqrt{2}+\sqrt[3]{4}\right)\left(\sqrt{2}-\sqrt[3]{4}\right)}=\frac{\sqrt{2}-\sqrt[3]{4}}{2-\sqrt[3]{16}}=\frac{\sqrt{2}-\sqrt[3]{4}}{2\left(1-\sqrt[3]{2}\right)}=\frac{1}{2}.\frac{\left(\sqrt[3]{4}-\sqrt{2}\right)\left(\sqrt[3]{4}+\sqrt[3]{2}+1\right)}{\left(\sqrt[2]{2}-1\right)\left(\sqrt[3]{4}+\sqrt[3]{2}+1\right)}=\frac{TS}{2\left(2-1\right)}=\frac{TS}{2}\)

1.Trên bảng cho 3 số \(\sqrt{2},2,\frac{1}{\sqrt{2}}\). Mỗi lần xóa đi 2 số a và b trong 3 số trên thì ta thêm vào 2 số mới là \(\frac{a+b}{\sqrt{2}}\)và \(\frac{\left|a-b\right|}{\sqrt{2}}\)CMR dù ta có xóa đi bao nhiêu lần nữa thì vẫn ko tồn tại một lúc 3 số \(\frac{1}{2\sqrt{2}},1+\sqrt{2},\sqrt{2}\)2. Trên bảng cho 4 số . Mỗi lần thay 2 số a và b thành hai số \(a^2+b^2+\sqrt{a^2+b^2}\)và \(a^2+b^2-\sqrt{a^2+b^2}\)Gỉa...
Đọc tiếp

1.Trên bảng cho 3 số \(\sqrt{2},2,\frac{1}{\sqrt{2}}\). Mỗi lần xóa đi 2 số a và b trong 3 số trên thì ta thêm vào 2 số mới là \(\frac{a+b}{\sqrt{2}}\)và \(\frac{\left|a-b\right|}{\sqrt{2}}\)

CMR dù ta có xóa đi bao nhiêu lần nữa thì vẫn ko tồn tại một lúc 3 số \(\frac{1}{2\sqrt{2}},1+\sqrt{2},\sqrt{2}\)

2. Trên bảng cho 4 số . Mỗi lần thay 2 số a và b thành hai số \(a^2+b^2+\sqrt{a^2+b^2}\)và \(a^2+b^2-\sqrt{a^2+b^2}\)

Gỉa sử ban đầu có 4 số 2,3,4,5 thì sau một số lần thực hiện như vậy có thể có được 4 số đều nhỏ hơn 1 không. vì sao?

3. Trên một hòn đảo có một loài tắc kè sinh sống, chúng có 3 màu xanh, đỏ ,tím. Tất cả có 2011 con màu xanh, 2012 con màu đỏ và 2013 con màu tím. Để lẩn trốn và săn mói thì chúng đổi màu như sau

-Nếu 2 con khác màu gặp nhau thì chúng cùng biến đỗi sang màu thứ ba

- Nếu 2 con cùng màu gặp nhau thì chúng giữ nguyên màu

Có khi nào tất cả con tắc kè cùng màu được không. Vì sao?

0
22 tháng 9 2018

Câu trả lời là không. Và lời giải khá đơn giản. Thay dấu cộng bằng số 1 và dấu trừ bằng - 1. Xét tích tất cả các số trên bảng vuông. Khi đó, qua mỗi phép biến đổi, tích này không thay đổi (vì sẽ đổi dấu 4 số). Vì vậy, cho dù ta thực hiện bao nhiêu lần, từ bảng vuông (1, 15) sẽ chỉ đưa về các bảng vuông có số lẻ dấu -, có nghĩa là không thể đưa về bảng có toàn dấu cộng. 

Bạn tham khảo nha

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó...
Đọc tiếp

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.
2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó đều là tam giác cân.
3. (Thuỵ Điển, 82) Tìm tất cả các giá trị của n N để với mỗi giá trị đó tồn tại số m N, mà tam giác ABC có cạnh AB = 33, AC = 21, BC = n và các điểm D, E lần lượt ở trên cạnh AB, AC thoả mãn điều kiện AD=DE=EC=m.
4. (Việt Nam, 79) Tìm tất cả bộ ba các số a, b, c N là các độ dài các cạnh của tam giác nội tiếp đường tròn đường kính 6,25.
5. (Nữu Ước, 78) Tam giác ABC và tam giác DEF cùng nội tiếp trong một đường tròn. Chứng minh rằng chu vi của chúng bằng nhau khi và chỉ khi có: sinA+sinB+sinC=sinD+sinE+sinF.
6. (Nam Tư, 81) Một đường thẳng chia một tam giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau. Chứng minh rằng tâm đường tròn nội tiếp tam giác nằm trên đường thẳng ấy.
7. (Áo, 83) Cho tam giác ABC, trên các cạnh AB, AC, BC lấy lần lượt các điểm C’, B’, A’ sao cho các đoạn AA’, BB’, CC’ cắt nhau tại một điểm. Các điểm A”, B”, C” lần lượt đối xứng với các điểm A, B, C qua A’, B’, C’. Chứng minh rằng: SA”B”C” = 3SABC + 4SA’B’C’
8. (Áo, 71) Các đường trung tuyến của tam giác ABC cắt nhau tại O. Cmr: AB2 + BC2 + CA2 = 3(OA2 + OB2 + OC2)
9. (Nữu Ước, 79) Chứng minh rằng nếu trọng tâm của một tam giác trùng với trọng tâm của tam giác có các đỉnh là trung điểm các đường biên của nó, thì tam giác đó là tam giác đều.
10. (Anh, 83) Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC, D là trung điểm cạnh AB, E là trọng tâm tam giác ACD. Chứng minh rằng nếu AB=AC thì OE vuông góc với CD.
11. (Tiệp Khắc, 72) Tìm tất cả các cặp số thực dương a, b để từ chúng tồn tại tam giác vuông CDE và các điểm A, B ở trên cạnh huyền DE thoả mãn điều kiện: và AC=a, BC=b.
12. (Nữu Ước, 76) Tìm một tam giác vuông có các cạnh là số nguyên, có thể chia mỗi góc thành ba phần bằng nhau bằng thước kẻ và compa.
13. (Phần Lan, 80) Cho tam giác ABC. Dựng các đường trung trực của AB và AC. Hai đường trung trực trên cắt đường thẳng BC ở X và Y tương ứng. Chứng minh rằng đẳng thức: BC=XY
a) Đúng nếu tanB.tanC=3
b) Đẳng thức có thể đúng khi tanB.tanC 3: khi đó hãy tìm tập hợp M thuộc R để đẳng thức đã dẫn trên tương đương với điều kiện tanB.tanC M.
14. (Nữu Ước, 76) O là trực tâm của tam giác nhọn ABC. Trên đoạn OB và OC người ta lấy hai điểm B1 và C1 sao cho . Chứng minh rằng AB1=AC1.
15. (Anh, 81) O là trực tâm của tam giác ABC, A1, B1, C1 là trung điểm các cạnh BC, CA, AB. Đường tròn tâm O cắt đường thẳng B1C1 ở D1 và D2, cắt đường thẳng C1A1 ở E1 và E2, cắt đường thẳng A1B1 ở F1 và F¬2. Cmr: AD1=AD2=BE1=BE2=CF1=CF2.
16. (Nam Tư, 83) Trong tam giác ABC lấy điểm P, còn trên cạnh AC và BC lấy các điểm tương ứng M và L sao cho: và . Chứng minh rằng nếu D là trung điểm cạnh AB thì DM=DL.
17.Tìm quĩ tích các điểm M trong tam giác ABC thoả mãn điều kiện: MAB + MBC+ MCA=90
18.Kí hiệu Bij (i, j {1;2;3}) là điểm đối xứng của đỉnh Ai của tam giác thường A1A2A3 qua phân giác xuất phát từ đỉnh A1. Chứng minh rằng các đường thẳng B12B21, B13B31, B23B32 song song với nhau.
19. Đường phân giác trong và ngoài góc C của tam giác ABC cắt đường thẳng AB ở L và M. Chứng minh rằng nếu CL=CM thì: AC2+BC2=4R2 (R là bán kính đường tròn ngoại tiếp tam giác ABC).

0
1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó...
Đọc tiếp

1. (Nam Tư, 81) Cho tam giác nhọn ABC không đều. Kẻ đường cao AH, trung tuyến BM và đường phân giác CL của góc ACB. Trung tuyến BM cắt AH và CL lần lượt tại P, Q. CL cắt AH ở R. Chứng minh rằng tam giác PQR không phải là tam giác đều.
2. (Bỉ, 77) Chứng mình rằng nếu cho trước các số thực dương a, b, c và với mỗi giá trị của n N, tồn tại một tam giác có cạnh an, bn, cn thì tất cả tam giác đó đều là tam giác cân.
3. (Thuỵ Điển, 82) Tìm tất cả các giá trị của n N để với mỗi giá trị đó tồn tại số m N, mà tam giác ABC có cạnh AB = 33, AC = 21, BC = n và các điểm D, E lần lượt ở trên cạnh AB, AC thoả mãn điều kiện AD=DE=EC=m.
4. (Việt Nam, 79) Tìm tất cả bộ ba các số a, b, c N là các độ dài các cạnh của tam giác nội tiếp đường tròn đường kính 6,25.
5. (Nữu Ước, 78) Tam giác ABC và tam giác DEF cùng nội tiếp trong một đường tròn. Chứng minh rằng chu vi của chúng bằng nhau khi và chỉ khi có: sinA+sinB+sinC=sinD+sinE+sinF.
6. (Nam Tư, 81) Một đường thẳng chia một tam giác thành hai phần có diện tích bằng nhau và chu vi bằng nhau. Chứng minh rằng tâm đường tròn nội tiếp tam giác nằm trên đường thẳng ấy.
7. (Áo, 83) Cho tam giác ABC, trên các cạnh AB, AC, BC lấy lần lượt các điểm C’, B’, A’ sao cho các đoạn AA’, BB’, CC’ cắt nhau tại một điểm. Các điểm A”, B”, C” lần lượt đối xứng với các điểm A, B, C qua A’, B’, C’. Chứng minh rằng: SA”B”C” = 3SABC + 4SA’B’C’
8. (Áo, 71) Các đường trung tuyến của tam giác ABC cắt nhau tại O. Cmr: AB2 + BC2 + CA2 = 3(OA2 + OB2 + OC2)
9. (Nữu Ước, 79) Chứng minh rằng nếu trọng tâm của một tam giác trùng với trọng tâm của tam giác có các đỉnh là trung điểm các đường biên của nó, thì tam giác đó là tam giác đều.
10. (Anh, 83) Giả sử O là tâm đường tròn ngoại tiếp tam giác ABC, D là trung điểm cạnh AB, E là trọng tâm tam giác ACD. Chứng minh rằng nếu AB=AC thì OE vuông góc với CD.
11. (Tiệp Khắc, 72) Tìm tất cả các cặp số thực dương a, b để từ chúng tồn tại tam giác vuông CDE và các điểm A, B ở trên cạnh huyền DE thoả mãn điều kiện: và AC=a, BC=b.
12. (Nữu Ước, 76) Tìm một tam giác vuông có các cạnh là số nguyên, có thể chia mỗi góc thành ba phần bằng nhau bằng thước kẻ và compa.
13. (Phần Lan, 80) Cho tam giác ABC. Dựng các đường trung trực của AB và AC. Hai đường trung trực trên cắt đường thẳng BC ở X và Y tương ứng. Chứng minh rằng đẳng thức: BC=XY
a) Đúng nếu tanB.tanC=3
b) Đẳng thức có thể đúng khi tanB.tanC 3: khi đó hãy tìm tập hợp M thuộc R để đẳng thức đã dẫn trên tương đương với điều kiện tanB.tanC M.
14. (Nữu Ước, 76) O là trực tâm của tam giác nhọn ABC. Trên đoạn OB và OC người ta lấy hai điểm B1 và C1 sao cho . Chứng minh rằng AB1=AC1.
15. (Anh, 81) O là trực tâm của tam giác ABC, A1, B1, C1 là trung điểm các cạnh BC, CA, AB. Đường tròn tâm O cắt đường thẳng B1C1 ở D1 và D2, cắt đường thẳng C1A1 ở E1 và E2, cắt đường thẳng A1B1 ở F1 và F¬2. Cmr: AD1=AD2=BE1=BE2=CF1=CF2.
16. (Nam Tư, 83) Trong tam giác ABC lấy điểm P, còn trên cạnh AC và BC lấy các điểm tương ứng M và L sao cho: và . Chứng minh rằng nếu D là trung điểm cạnh AB thì DM=DL.
17.Tìm quĩ tích các điểm M trong tam giác ABC thoả mãn điều kiện: MAB + MBC+ MCA=90
18.Kí hiệu Bij (i, j {1;2;3}) là điểm đối xứng của đỉnh Ai của tam giác thường A1A2A3 qua phân giác xuất phát từ đỉnh A1. Chứng minh rằng các đường thẳng B12B21, B13B31, B23B32 song song với nhau.
19. Đường phân giác trong và ngoài góc C của tam giác ABC cắt đường thẳng AB ở L và M. Chứng minh rằng nếu CL=CM thì: AC2+BC2=4R2 (R là bán kính đường tròn ngoại tiếp tam giác ABC).

2
3 tháng 8 2016

Bài quá dài

 

3 tháng 8 2016

19 câu