Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\hat{DAB}\) chung
Do đó: ΔADB~ΔAEC
b: Xét ΔFEB vuông tại E và ΔFDC vuông tại D có
\(\hat{EFB}=\hat{DFC}\) (hai góc đối đỉnh)
Do đó: ΔFEB~ΔFDC
=>\(\frac{EF}{DF}=\frac{EB}{DC}\)
=>\(EF\cdot DC=EB\cdot DF\)
c: Ta có: BH⊥BA
CF⊥AB
Do đó: BH//CF
Ta có: BF⊥CA
CH⊥CA
Do đó: BF//CH
Xét tứ giác BFCH có
BF//CH
BH//CF
Do đó: BFCH là hình bình hành
=>BC cắt FH tại trung điểm của mỗi đường
mà G là trung điểm của BC
nên G là trung điểm của FH
Xét ΔAFH có
G,I lần lượt là trung điểm của FH,FA
=>GI là đường trung bình của ΔAFH
=>GI//AH và \(GI=\frac12AH\)
=>AH=2GI
ΔEBC vuông tại E
mà EG là đường trung tuyến
nên GE=GB=GC
Xét ΔGEB có \(\hat{EGC}\) là góc ngoài tại đỉnh G
nên \(\hat{EGC}=\hat{GEB}+\hat{GBE}=2\cdot\hat{GBE}=2\cdot\hat{ABC}\) (1)
ΔAFE vuông tại E
mà EI là đường trung tuyến
nên IE=IF=IA
Xét ΔEIF có \(\hat{EIA}\) là góc ngoài tại đỉnh I
nên \(\hat{EIA}=\hat{IEF}+\hat{IFE}=2\cdot\hat{IFE}\) (2)
Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại F
Do đó: F là trực tâm của ΔABC
=>AF⊥BC
=>\(\hat{FAB}+\hat{ABC}=90^0\)
mà \(\hat{FAB}+\hat{AFE}=90^0\)
nên \(\hat{ABC}=\hat{AFE}\) (3)
Từ (1),(2),(3) suy ra \(\hat{EIA}=\hat{EGC}\)

Ad ĐỪNG XÓA
Học tiếng anh free vừa học vừa chơi đây
các bạn vào đây đăng kí nhá : https://iostudy.net/ref/165698
Cô giáo bị nổ tung trong lớp
a: Xét ΔHND vuông tại N và ΔHME vuông tại M có
\(\hat{NHD}=\hat{MHE}\) (hai góc đối đỉnh)
Do đó: ΔHND~ΔHME
b: Xét ΔHKD vuông tại K và ΔHMF vuông tại M có
\(\hat{KHD}=\hat{MHF}\) (hai góc đối đỉnh)
Do đó: ΔHKD~ΔHMF
=>\(\frac{HK}{HM}=\frac{HD}{HF}\)
=>\(HK\cdot HF=HM\cdot HD\left(1\right)\)
ΔHND~ΔHME
=>\(\frac{HN}{HM}=\frac{HD}{HE}\)
=>\(HN\cdot HE=HM\cdot HD\left(2\right)\)
Từ (1),(2) suy ra \(HK\cdot HF=HD\cdot HM=HN\cdot HE\)