
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=\frac{n+1}{n-2}\\ Athu\text{ộc}Zkhin+1⋮n-2\\ =>n-2+3⋮n-2\\ =>3⋮n-2\)
=>n-2 thuộc Ư(3)={1;3;-1;-3}
=>n thuoc {3;5;1;-1}
b) A có GTLN khi n lớn nhất =>n=5
Câu b không chắc chắn

a)
Để A thuộc Z thì ( dấu " : " là chia hết cho )
n + 1 : n - 2
n - 2 + 3 : n - 2
=> 3 : n - 2 => n - 2 thuộc Ư(3) = { 1; 3; -1; -3 }
Sau đó tìm n là xong
b) Cũng gần tương tự như phần a !
\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)
Để A nhỏ nhất thì \(\frac{3}{n-3}\)nhỏ nhất
mà n nguyên ( theo đề bài )
=> 3 : n - 3
Ta có bảng :
n - 3 | 1 | -1 | 3 | -3 |
n | 4 | 2 | 6 | 0 |
Lần lượt thay n vào A thì ta thấy A nhỏ nhất <=> n = 0

a, \(A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)
\(\Rightarrow n-2+3⋮n-2\)
\(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
\(n\inℤ\Rightarrow n-2\inℤ\)
\(\Rightarrow n-2\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{1;3;-1;5\right\}\)
b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
để A lớn nhất thì \(\frac{3}{n-2}\) lớn nhất
\(\Rightarrow n-2\) là số nguyên dương nhỏ nhất
\(\Rightarrow n-2=1\)
\(\Rightarrow n=3\)
vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)
\(a)\) Ta có :
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
Để \(A\inℤ\) thì \(3⋮\left(n-2\right)\)\(\Rightarrow\)\(\left(n-2\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
\(n-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(3\) | \(1\) | \(5\) | \(-1\) |
Vậy \(n\in\left\{-1;1;3;5\right\}\) thì A là số nguyên
\(b)\) Ta có :
\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\) ( như câu a )
Để A đạt GTLN thì \(\frac{3}{n-2}\) phải đạt GTLN hay \(n-2>0\) và đạt GTNN
\(\Rightarrow\)\(n-2=1\)
\(\Rightarrow\)\(n=3\)
Suy ra : \(A=\frac{3+1}{3-2}=\frac{4}{1}=4\)
Vậy \(A_{max}=4\) khi \(n=3\)
Chúc bạn học tốt ~

Giải:
Để A thuộc Z thì \(n+1⋮n-2\)
Ta có:
\(n+1⋮n-2\)
\(\Rightarrow\left(n-2\right)+3⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\in\left\{\pm1;\pm3\right\}\)
+) \(n-2=1\Rightarrow n=3\)
+) \(n-2=-1\Rightarrow n=1\)
+) \(n-2=3\Rightarrow n=5\)
+) \(n-2=-5\Rightarrow n=-3\)
Vì A có GTLN nên n cũng có GTLN suy ra n = 5
Vậy n = 5 thì A sẽ có GTLN

Ta thấy các phân số đã cho có dạng :
\(\frac{5}{5}+(n+3);\frac{6}{6}(n+3);...;\frac{17}{17}(n+3)\)
Tức là có dạng \(\frac{a}{a}+(n+3)\)
Để các phân số đã cho tối giản thì a và n + 3 phải nguyên tố cùng nhau
n + 3 phải nhỏ nhất và nguyên tố cùng nhau với các số 5;6;7;...;17
n + 3 phải là số nguyên tố nhỏ nhất lớn hơn 17
n + 3 = 19
=> n = 16
Vậy n = 16

Ta có :
\(A=\frac{6n-1}{3n+2}\)
\(A=\frac{6n+4-5}{3n+2}\)
\(A=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)
Mà để \(2-\frac{5}{3n+2}\)có giá trị nhỏ nhất
\(\Rightarrow\frac{5}{3n+2}\)phải có giá trị lớn nhất
Mà để \(\frac{5}{3n+2}\)có giá trị lớn nhất thì \(3n+2\)phải là số nguyên âm nhỏ nhất và là ước của 5
\(\Rightarrow3n+2=-1\)để \(\frac{5}{3n+2}\) bằng -5
\(\Rightarrow3n=-3\)
\(\Rightarrow n=-1\)
Vậy n=-1 thì A có giá trị nhỏ nhất


a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)
<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)
c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)

a. Vì A thuộc Z
\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )
b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)
Vì B thuộc Z nên 5 / x - 3 thuộc Z
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )
c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)
\(=x-2-\frac{2}{x+1}\)
Vi C thuộc Z nên 2 / x + 1 thuộc Z
\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )
hép
Sai bét