Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Vì A,E,M,B cùng nằm trên (O)
nên AEMB nội tiếp
góc AMB=1/2*180=90 độ
=>AM vuông góc IB
ΔIAB vuông tại A có AM vuông góc IB
nên IA^2=IM*IB

a) Tứ giác EFMK có góc E và góc M vuông (vì đều bằng các góc chắn nửa đường tròn) nên là tứ giác nội tiếp.
b) Ta có
\widehat{HAF}=\widehat{ABE}HAF=ABE (Góc tạo bởi tia tiếp tuyến và dây cung bằng góc nội tiếp cùng chắn cung);
\widehat{EAM}=\widehat{EBM}EAM=EBM ( góc nội tiếp cùng chắn cung \stackrel\frown{EM}EM⌢)
mà \widehat{HAF}=\widehat{EAM}HAF=EAM (AEAE là tia phân giác góc IAM)
nên \widehat{ABE}=\widehat{EBM}ABE=EBM, hay BE là tia phân giác góc ABM.
Mặt khác BE cũng là đường cao trong tam giác ABF nên tam giác ABF cân tại B.
c) Tam giác HAK có AE vừa là phân giác vừa là đường cao nên nó cân tại A. Suy ra E là trung điểm HK.
Tứ giác HFKA có hai đường chéo vuông góc với nhau tại trung điểm mỗi đường nên là hình thoi.
d) HFKA là hình thoi nên FK // HA, suy ra tứ giác IFKA là hình thang.
Để IFKA nội tiếp được đường tròn thì nó phải là hình thang cân, hay tam giác MIA vuông cân tại M.
Khi đó, \widehat{IAM}=45^{\circ}\Rightarrow\widehat{MAB}=45^{\circ},IAM=45∘⇒MAB=45∘, tam giác MAB vuông cân tại M. Do đó M là điểm chính giữa cung nửa đường tròn AB.

a:góc ABD=góc DCA
góc ABD=góc FAD(góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)
góc FAD=góc CAD
=>góc ABD=góc CBD
=>BD là phân giác của góc ABE
mà góc ADB=90 độ
nên BD là đường cao
=>ΔBAE cân tại B
b: Xét ΔEAB có
AC,BD là các đường cao
AC cắt BD tại K
Do đó: K là trực tâm
=>EK vuông góc với BA
c: Xét ΔAKF có AD vừa là đường cao, vừa là phân giác
nên ΔAKF cân tại A
=>góc AKF=góc AFK=góc KFE
=>AK//FE
Xét tứ giác AKEF có
AK//FE
AF//KE
KE=KA
Do đó: AKEF là hình thoi
Để chứng minh rằng \(A E^{2} = E D \cdot E B\) trong bài toán này, ta sẽ sử dụng một số định lý hình học cơ bản liên quan đến tiếp tuyến và tia phân giác.
Bài toán:
Giải pháp:
\(\frac{A E}{E B} = \frac{A C}{B C}\)
\(A E^{2} = A C \cdot A B\)
\(A E^{2} = A C \cdot A B\)
Và từ đó, thay vào biểu thức của định lý phân giác, ta sẽ thấy sự đồng nhất giữa các đoạn \(A E^{2}\) và \(E D \cdot E B\).
Kết luận:
Qua các bước trên và áp dụng các định lý hình học cơ bản, chúng ta có thể kết luận rằng:
\(A E^{2} = E D \cdot E B\)
đã được chứng minh.