Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


bài b
32x1y chia hết cho 45 suy ra 32x1y chia hết cho 9 và chia hết cho 5
suy ra y = 0 và y=5
rồi bạn làm tiếp nhé dễ ợt mà mk chỉ làm tóm tắt thôi
gọi số cần tìm là a(a∈N*)
theo bài ra ta có:
a:3,4,5,6 dư 2→a-2∈BCNN(3,4,5,6)
ta có:
3=3
4=22
5=5
6=2.3
BCNN(3,4,5,6)=60
a-2=60
→a=62
Mà 62 : 7 dư 3 nên a= 62(thỏa mãn)
Vậy ....

ta có :
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+..+\left(3^{58}+3^{59}+3^{60}\right)\)
\(=13.3+13.3^4+13.3^7+..+13.3^{58}\text{ nên A chia hết cho 13}\)
b. ta có :
\(M=\left(2+2^3\right)+\left(2^2+2^4\right)+\left(2^5+2^7\right)+..+\left(2^{18}+2^{20}\right)\)
\(=2.5+2^2.5+2^5.5+2^6.5+..+2^{18}.5\text{ nên B chia hết cho 5}\)
cíu làm giúp với >=D.


số tự nhiên đó là 49
49 chia 5 dư 4
49 chia 7 dư 6
49 chia 35 dư 14
vậy số đó khi chia cho 35 sẽ dư 14

\(A=2+2^2+2^3+2^4+.....2^{100}\)
\(=2.3+2^3.3+....2^{99}.3\)
\(=6\left(1+2^2+....2^{98}\right)⋮6\)
A = 2 + 2\(^2\) + 2\(^3\) + ...+ \(2^{100}\)
Xét dãy số: 1; 2; 3;...; 100
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (100 - 1) : 1+ 1 = 100
Vì 100 : 2 = 50
Nên nhóm 2 số hạng liên tiếp của A vào nhau ta được:
A = (2 + 2\(^2\)) + (\(2^3\) + \(2^4\)) + ...+(2\(^{99}\) + 2\(^{100}\))
A = 2.(2 + 1) + 2\(^3\).(1 + 2) + ...+ 2\(^{99}.\left(1+2\right)\)
A = 2.3 + 2\(^3\).3+ ...+ 2\(^{99}\). 3
A = 2.3.(1 + 2\(^3\) + ...+ 2\(^{99}\))
A = 6.(1+ 2\(^3\) + ... + 2\(^{99}\)) ⋮ 6 (đpcm)

a) Gọi số cần tìm là a \(\left(a\ne1;a>1\right)\)
Theo đề bài ta có: a chia cho 2;3;4;5;6 (dư 1)
=> a - 1 chia hết cho 2;3;4;5;6
Mà a nhỏ nhất => \(a-1\in BCNN\left(2;3;4;5;6\right)=60\)
=> a = 60 + 1 = 61
(Xem lại đề, vì chỗ chia hết cho 7??)
b) Để \(\overline{71x1y}⋮45\Leftrightarrow\) \(\overline{71x1y}⋮9\) và \(5\)
Để \(\overline{71x1y}⋮5\) <=> Có tận cùng là 0 và 5
<=> y = {0;5}
Để \(\overline{71x1y}⋮9\) <=> Tổng các chữ số phải chia hết cho 9
Tức là: 9 + 1 + x + 1 + y phải chia hết cho 9
Nếu y = 0 \(\Rightarrow7+1+x+1+0\) phải chia hết cho 9
=> x = {0;8}
Nếu y = 5 \(\Rightarrow7+1+x+1+5\) phải chia hết cho 9
=> x = 4
Vậy x = {0;8;4} và y = {0;5}
a) Gọi số cần tìm là a
ta có a chia 2,3,4,5,6 đều dư 1 ⇒ a-1 chia hết cho 2,3,4,5,6
⇔a-1 là bội chung của 2,3,4,5,6
a-1= { 60;120;180;240;300;360;420;480;540;600;....}
Mặt khác ta có a chia hết cho 7 và phải là số nhỏ nhất
nếu a-1= 300 thì a=301 là số nhỏ nhât thoa mãn yêu cầu của bài toán
b)Để 71x1y chia hết cho 45 thì 71x1y phải chia hết cho 9 và 5
Để 71x1y chia hết cho 5 thì y bằng 0 hoặc 5
TH1:Nếu y bằng 0 thì:(7 + 1 + x + 1 + 0)chia hết cho 9
( 9 + x ) chia hết cho 9
Vậy nếu y bằng 0 thì x bằng 0 hoặc 9
TH2:Nếu y bằng 5 thì:(7 + 1 + x + 1 + 5) chia hết cho 9
( 14 + x ) chia hết cho 9
Vậy nếu y bằng 5 thì x bằng 4

a) Gọi số đó là a (\(a\in N;a\ge3\)) thì từ đề toán,ta suy ra a - 2 chia hết cho 3 ; 4 ; 5 ; 6 hay a - 2\(\in\)BC(3 ; 4 ; 5 ; 6)
BCNN(3 ; 4 ; 5 ; 6) = 22.3.5 = 60 nên BC(3 ; 4 ; 5 ; 6) = {0 ; 60 ; 120 ; 180 ; ...}\(\Rightarrow a\in\){2 ; 62 ; 122 ; 182 ; ..}
Ta thấy 122 là số nhỏ nhất chia 7 dư 3 trong tập hợp trên nên số cần tìm là 122
b) Giả sử ƯCLN(a ; b) = d thì a = dm ; b = dn(\(m,n\in Z^+\)) và ƯCLN(m ; n) = 1
ƯCLN(a,b).BCNN(a,b) = ab nên BCNN(a,b) = ab : ƯCLN(a,b) = d2mn = dmn
Ta có : 23 = ƯCLN(a,b) + BCNN(a,b) = d(1 + mn) => 1 + mn\(\in\)Ư(23) = {1 ; 23} mà\(mn\ge1\left(m,n\in Z^+\right)\)
\(\Rightarrow1+mn\ge2\)=> 1 + mn = 23 => mn = 22 ; d = 1 => a = m ; b = n mà (m ; n) = (1 ; 22) ; (2 ; 11) và 2 hoán vị
Vậy 2 số cần tìm là 1 và 22 hoặc 2 và 11
tim dien h tam giac ABC biet dien h hinh thang KQCB bang 132cm2 biet AK =2/3AB QC=3/2QA
122