Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Tam giác \(SAB\) vuông cân tại \(S\), có \(M\) là trung điểm của \(AB\)
\(\left. \begin{array}{l} \Rightarrow SM \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right\} \Rightarrow SM \bot \left( {ABCD} \right)\)
b) \(ABCD\) là hình chữ nhật \( \Rightarrow AB \bot A{\rm{D}}\)
\(SM \bot \left( {ABCD} \right) \Rightarrow SM \bot A{\rm{D}}\)
\( \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)
c) \(A{\rm{D}} \bot \left( {SAB} \right) \Rightarrow A{\rm{D}} \bot SB\)
Tam giác \(SAB\) vuông cân tại \(S\)\( \Rightarrow SA \bot SB\)
\(\left. \begin{array}{l} \Rightarrow SB \bot \left( {SA{\rm{D}}} \right)\\SB \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SA{\rm{D}}} \right)\)
Tam giác \(SAB\) vuông cân tại \(S\), có \(M\) là trung điểm của \(AB\)
\(\left. \begin{array}{l} \Rightarrow SM \bot AB\\\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {ABCD} \right) = AB\end{array} \right\} \Rightarrow SM \bot \left( {ABCD} \right)\)
b) \(ABCD\) là hình chữ nhật \( \Rightarrow AB \bot A{\rm{D}}\)
\(SM \bot \left( {ABCD} \right) \Rightarrow SM \bot A{\rm{D}}\)
\( \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)
c) \(A{\rm{D}} \bot \left( {SAB} \right) \Rightarrow A{\rm{D}} \bot SB\)
Tam giác \(SAB\) vuông cân tại \(S\)\( \Rightarrow SA \bot SB\)
\(\left. \begin{array}{l} \Rightarrow SB \bot \left( {SA{\rm{D}}} \right)\\SB \subset \left( {SBC} \right)\end{array} \right\} \Rightarrow \left( {SBC} \right) \bot \left( {SA{\rm{D}}} \right)\)

Đáp án B.
Gọi H là trung điểm của cạnh AB. Khi đó SH ⊥ (ABCD)
Ta có SH ⊥ AB; AB ⊥ HN; HN ⊥ SH và SH = 3
Chọn hệ trục tọa độ Oxyz sao cho H trùng với O, B thuộc tia Ox, N thuộc tia Oy và S thuộc tia Oz. Khi đó: B(1;0;0), A(-1;0;0), N(0;2 3 ;0), C(1;2 3 ;0)
D(-1;2 3 ;0), S(0;0; 3 ), M( - 1 2 ; 0 ; 3 2 ), P(1; 3 ;0)
Mặt phẳng (SCD) nhận
làm một vectơ pháp tuyến; mặt phẳng (MNP) nhận
làm một vectơ pháp tuyến.
Gọi φ là góc tạo bởi hai mặt phẳng (MNP) và (SCD) thì
Phân tích phương án nhiễu.
Phương án A: Sai do HS tính đúng
nhưng lại tính sai Do đó tính được
Phương án B: Sai do HS tính đúng nhưng lại tính sai
Do đó tính được
Phương án C: Sai do HS tính đúng nhưng lại tính sai
Do đó tính được

Do tam giác SAB cân và I là trung điểm AB \(\Rightarrow SI\perp AB\)
Mặt khác AB là giao tuyến của hai mặt phẳng vuông góc (SAB) và (ABCD)
\(\Rightarrow SI\perp\left(ABCD\right)\)
\(\Rightarrow SI\perp AD\) (1)
Lại có \(AD\perp AB\) (2) (giả thiết)
(1);(2)\(\Rightarrow AD\perp\left(SAB\right)\)
Mà \(AD\in\left(SAD\right)\Rightarrow\left(SAD\right)\perp\left(SAB\right)\)
b.
Theo cmt ta có \(\left\{{}\begin{matrix}SI\perp\left(ABCD\right)\\SI\in\left(SID\right)\end{matrix}\right.\) \(\Rightarrow\left(SID\right)\perp\left(ABCD\right)\)
c.
\(\overrightarrow{ID}.\overrightarrow{CK}=\left(\overrightarrow{IA}+\overrightarrow{AD}\right)\left(\overrightarrow{CD}+\overrightarrow{DK}\right)=\left(-\dfrac{1}{2}\overrightarrow{AB}+\overrightarrow{AD}\right)\left(-\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AD}\right)\)
\(=\dfrac{1}{2}AB^2-\dfrac{1}{2}AD^2+\dfrac{1}{4}\overrightarrow{AB}.\overrightarrow{AD}-\overrightarrow{AB}.\overrightarrow{AD}\)
\(=\dfrac{1}{2}AB^2-\dfrac{1}{2}AD^2\) (do AB vuông góc AD nên \(\overrightarrow{AB}.\overrightarrow{AD}=0\))
\(=0\) (ABCD là hình vuông nên AB=AD)
\(\Rightarrow ID\perp CK\)
Mà \(SI\perp\left(ABCD\right)\Rightarrow SI\perp CK\)
\(\Rightarrow CK\perp\left(SID\right)\)
\(\Rightarrow\left(SKC\right)\perp\left(SID\right)\)

Gọi N là trung điểm AB \(\Rightarrow MN\perp AD\Rightarrow AD\perp\left(SMN\right)\Rightarrow AD\perp SM\)
Mặt khác: \(MN=AB=a\) ; \(SM=SN=\sqrt{SO^2+\left(\dfrac{MN}{2}\right)^2}=\dfrac{a\sqrt{2}}{2}\)
\(\Rightarrow SM^2+SN^2=MN^2\Rightarrow\Delta SMN\) vuông cân tại S hay \(SM\perp SN\)
\(\Rightarrow SM\perp\left(SAD\right)\)
Trong mp (SBC), dựng hình chữ nhật SMCP \(\Rightarrow CP||SM\Rightarrow CP\perp\left(SAD\right)\)
\(\Rightarrow\) SP là hình chiếu vuông góc của SC lên (SAD) hay \(\widehat{CSP}=\phi\)
\(AC=a\sqrt{5}\Rightarrow SC=\sqrt{SO^2+\left(\dfrac{AC}{2}\right)^2}=\dfrac{a\sqrt{6}}{2}\); \(SP=MC=\dfrac{BC}{2}=a\)
\(\Rightarrow CP=\sqrt{SC^2-SP^2}=\dfrac{a\sqrt{2}}{2}\)
\(sin\phi=\dfrac{CP}{SC}=\dfrac{\sqrt{3}}{3}\)

Do SAB là tam giác đều \(\Rightarrow SH\perp AB\)
Mà \(\left\{{}\begin{matrix}\left(SAB\right)\perp\left(ABCD\right)\\AB=\left(SAB\right)\cap\left(ABCD\right)\end{matrix}\right.\) \(\Rightarrow SH\perp\left(ABCD\right)\)
Gọi E là trung điểm CD, từ H kẻ \(HF\perp SE\) (F thuộc SE)
\(\left\{{}\begin{matrix}HE\perp CD\\SH\perp\left(ABCD\right)\Rightarrow SH\perp CD\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SHE\right)\)
\(\Rightarrow CD\perp HF\)
\(\Rightarrow HF\perp\left(SCD\right)\Rightarrow HF=d\left(H;\left(SCD\right)\right)\)
\(HE=BC=a\) ; \(SH=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều cạnh a)
Hệ thức lượng:
\(HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{21}}{7}\)

tham khảo:
a) Tam giác SAB có MN là đường trung bình nên MN//SA
Mà SA⊥(ABCD) nên MN⊥(ABCD). Suy ra MN⊥AB
Hình thang ABCD có NP là đường trung bình nên NP//BC//AD. Mà BC⊥AB nên NP⊥ABTa có AB vuông góc với hai đường thẳng MN và NP cắt nhau cùng thuộc (MNPQ) nên AB⊥(MNPQ)
b) Vì AB⊥(MNPQ);MQ∈(MNPQ) nên AB⊥MQ
Tam giác SBC có MQ là đường trung bình nên MQ//BC. Mà SA⊥BC nên SA⊥MQ
Ta có MQ vuông góc với hai đường thẳng SA và AB cắt nhau cùng thuộc (SAB) nên MQ⊥(SAB)
?
Ta sẽ giải bài toán theo từng bước như yêu cầu, với hình chóp \(S . A B C D\), trong đó đáy \(A B C D\) là hình chữ nhật, tam giác \(S A B\) đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy \(\left(\right. A B C D \left.\right)\). Gọi \(M\) là trung điểm của \(A B\).
✅ 1. Chứng minh: \(S M \bot \left(\right. A B C D \left.\right)\)
Giả thiết:
Phân tích:
➡️ Kết luận: \(S M \bot \left(\right. A B C D \left.\right)\).
✅ 2. Gọi \(H\) là trung điểm của \(C D\). Chứng minh: \(S H \bot C D\), \(M H \bot C D\)
a. Chứng minh \(S H \bot C D\)
Lập luận:
Xét hình học không gian:
➡️ \(S H \bot C D\)
(Bởi trong hình chữ nhật, nếu điểm \(S\) nằm đối xứng trên trục trung tuyến của hình và nối với trung điểm \(H\) của cạnh đối thì đoạn đó sẽ vuông góc với cạnh đó.)
b. Chứng minh \(M H \bot C D\)
Lập luận:
➡️ Đoạn thẳng nối hai trung điểm \(M\) và \(H\) chính là đường trung bình của hình chữ nhật và vuông góc với \(C D\) (vì nối từ trung điểm của một cạnh sang trung điểm cạnh đối song song).
➡️ \(M H \bot C D\)
✅ Tổng kết: