
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐK: -1<x\(\ne\)0
Đặt \(log_3\left(x+1\right)=t\) (t\(\ne\)0)
bpt trở thành \(\frac{1}{3^t}>\frac{1+t}{3^t-1}\)
\(\Leftrightarrow\frac{1+t}{3^t-1}-\frac{1}{3^t}< 0\Leftrightarrow\frac{t.3^t+1}{3^t\left(3^t-1\right)}< 0\)
vì \(3^t>0\forall t\) nên ta có thể nhân 2 vế của bpt với \(3^t\)
Khi đó, ta có bpt \(\Leftrightarrow\frac{t.3^t+1}{3^t-1}< 0\)
*) Đặt \(f\left(t\right)=t.3^t+1\), f(0)=1
dễ thấy f(t) đồng biến trên tập R
*) Xét 2 trường hợp:
+TRƯỜNG HỢP 1) với t<0 \(\Leftrightarrow3^t< 1\Leftrightarrow3^t-1< 0\) (1)
vì \(\lim\limits_{t\rightarrow-\infty}\left[f\left(t\right)\right]=1\) nên f(t)>1 với mọi t \(\Leftrightarrow t.3^t+1>1\Rightarrow t.3^t+1>0\forall t\) (2)
kết hợp (1) và (2) ta thấy t<0 thỏa mãn bpt
+TRƯỜNG HỢP 2) với t>0 \(\Leftrightarrow3^t-1>0\) (3)
lại có f(t)>f(0) với mọi t>0 \(\Leftrightarrow t.3^t+1>1\) (4)
kết hợp (3) và (4) ta thấy không thỏa mãn bpt
vậy bpt đã cho tương đương t<0\(\Leftrightarrow log_3\left(x+1\right)< 0\Leftrightarrow x+1< 1\Leftrightarrow x< 0\)
kết hợp ĐK ta có -1<x<0


tìm 2 điểm A và B . tam giác vuông tại 0 => vecto OA*OB= 0 với O là gốc
a đù xem lần đầu sao k có pt h lại có . bài này mk tìm dc denta'=1=> nghiệm x1=m+1:x2=m-1( theo công thức nghiệm)=>A(m+1:0),B(m-1;0) => vì tam giác OAB vuông mà O là gốc nên => tích OA.OB=0 <=>(m+1)*(m-1)+0*0=0 => m^2-1=0 => m=+-1

a) Tập xác định : R\ {1}; y′=−4(x−1)2<0,∀x≠1y′=−4(x−1)2<0,∀x≠1 ;
Tiệm cận đứng : x = 1 . Tiệm cận ngang : y = 1.
Bảng biến thiên :
Đồ thị như hình bên.
b) Tập xác định : R \{2}; y′=6(2x−4)2>0,∀x≠2y′=6(2x−4)2>0,∀x≠2
Tiệm cận đứng : x = 2 . Tiệm cận ngang : y = -1.
Bảng biến thiên :
Đồ thị như hình bên.
c) Tập xác định : R∖{−12}R∖{−12}; y′=−5(2x+1)2<0,∀x≠−12y′=−5(2x+1)2<0,∀x≠−12
Tiệm cận đứng : x=−12x=−12 . Tiệm cận ngang : y=−12y=−12.
Bảng biến thiên :
Đồ thị như hình bên.

Bài 1)
Gọi số phức $z$ có dạng \(z=a+bi(a,b\in\mathbb{R})\).
Ta có \(|z|+z=3+4i\Leftrightarrow \sqrt{a^2+b^2}+a+bi=3+4i\)
\(\Rightarrow\left\{\begin{matrix}\sqrt{a^2+b^2}+a=3\\b=4\end{matrix}\right.\Rightarrow\left\{\begin{matrix}a=\frac{5}{6}\\b=4\end{matrix}\right.\)
Vậy số phức cần tìm là \(\frac{5}{6}+4i\)
b)
\(\left\{\begin{matrix} z_1+3z_1z_2=(-1+i)z_2\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \frac{z_1}{z_2}+3z_1=-1+i\\ 2z_1-z_2=3+2i\end{matrix}\right.\Rightarrow \frac{z_1}{z_2}+z_1+z_2=(-1+i)-(3+2i)=-4-i\)
\(\Leftrightarrow w=-4-i\Rightarrow |w|=\sqrt{17}\)
khó thật vì ko có kết quả
Sao khó bn,quá dễ :
1 + 1 = 2 .Chứ ví dụ như phép tính : 11+ 11 =
11
+ 11
23