
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Khi delta dương pt \(y'=0\) có hai nghiệm pb, ko mất tính tổng quát, giả sử \(x_1< x_2\)
Hệ số a=1 dương nên ta có dấu của \(y'\) như sau:
Do đó \(y'\ge0\) trên miền \([x_2;+\infty)\)
Để \(y'>0\) trên \(\left(1;+\infty\right)\) thì \(\left(1;+\infty\right)\) phải là tập con của \([x_2;+\infty)\) hay \(x_2\le1\)
\(y'=1-\frac{m}{\left(x-m\right)^2}=\frac{x^2-2mx+m^2-m}{\left(x-m\right)^2}\)
Để hàm số đồng biến trên khoảng đã cho thì hàm cần xác định và có đạo hàm không âm trên khoảng đó
- Để hàm số xác định trên khoảng thì \(m\le1\)
- Để \(x^2-2mx+m^2-m\ge0;\forall x>1\)
\(\Delta'=m^2-m^2+m=m\)
TH1: \(\Delta'\le0\Leftrightarrow m\le0\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left(x_1-1\right)\left(x_2-1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\x_1x_2-\left(x_1+x_2\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-3m+1\ge0\\2m< 2\end{matrix}\right.\)
\(\Rightarrow0< m\le\frac{3-\sqrt{5}}{2}\)
Vậy \(m\le\frac{3-\sqrt{5}}{2}\)

Lời giải:
Ta có: \(4^x+2^x=4x+2\) \(\Leftrightarrow 4^x+2^x-4x-2=0\)
Đặt \(f(x)=4^x+2^x-4x-2\)
\(\Rightarrow f'(x)=\ln 4.4^x+\ln 2.2^x-4\)
\(f'(x)=\ln 4(2^x)^2+\ln 2.2^x-4=0\Leftrightarrow \) \(\left[{}\begin{matrix}2^x\approx-1.96\left(vl\right)\\2^x=1.47\end{matrix}\right.\)
\(\Leftrightarrow x\approx \log_2(1.47)\)
Lập bảng biến thiên:
Từ bảng biến thiên ta suy ra pt \(f(x)=0\) có nghiệm \(x=\left\{0;1\right\}\)

a)ĐK: 2x+1>0
\(\log_3\left(2x+1\right)=2\log_{2x+1}3+1\)
\(\Leftrightarrow log_3\left(2x+1\right)=2.\frac{1}{log_3\left(2x+1\right)}+1\)
Nhân \(log_3\left(2x+1\right)\)cả 2 vế
Đặt \(t=log_3\left(2x+1\right)\)
\(\Leftrightarrow t^2-t-2=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=2\\t=-1\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}2x+1=9\\2x+1=\frac{1}{3}\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-\frac{1}{3}\end{array}\right.\)nhận cả 2 nghiệm
b)ĐK x>0
\(\Leftrightarrow1+log^2_{27}x=\frac{10}{3}log_{27}x\)
Đặt \(t=log_{27}x\)
\(\Leftrightarrow t^2-\frac{10}{3}t+1=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}t=3\\t=\frac{1}{3}\end{array}\right.\)\(\left[\begin{array}{nghiempt}x=27^3\\x=3\end{array}\right.\)

bạn tải về rồi zoom lên ý, vì đây là tớ chụp ảnh nên ảnh nhỏ
mong bạn tải về zoom lên hướng dẫn tớ với

Hôm bữa bên CLB của ĐH Bách Khoa Hồ Chí Minh có tổ chức ấy bạn, cơ mà chắc hết rùi :D Btw, có thầy gì admin page Luyện thi đánh giá năng lực hồi năm ngoái mình có follow thấy thầy cũng tổ chức thường xuyên lắm nè :v

Đừng quan tâm cái \(k2\pi\) đi, lấy nghiệm là số cố định thôi. Ví dụ \(\cos x=1\) thì bạn tìm được dấu bằng xảy ra khi \(x=0\)
nghĩa là vứt luôn k2\(\pi\) ạ? chỉ ghi nghiệm là số đằng trước thôi ạ?

\(\sqrt{-m}.\sqrt{-m}=\sqrt{\left(-m\right).\left(-m\right)}=\sqrt{m^2}=m\)

Lời giải:
HPT \(\Rightarrow 11(2x^2+3xy+y^2)=12(x^2-xy+3y^2)\)
\(\Leftrightarrow 22x^2+33xy+11y^2=12x^2-12xy+36y^2\)
\(\Leftrightarrow 10x^2+45xy-25y^2=0\)
\(\Leftrightarrow 2x^2+9xy-5y^2=0(*)\)
Dễ thấy $y=0$ không phải một nghiệm của HPT. Đặt $x=ty$
\((*)\Leftrightarrow 2(ty)^2+9ty.y-5y^2=0\)
\(\Leftrightarrow y^2(2t^2+9t-5)=0\)
Vì $y\neq 0$ nên $2t^2+9t-5=0$
\(\Leftrightarrow (2t-1)(t+5)=0\Rightarrow \left[\begin{matrix} t=\frac{1}{2}\\ t=-5\end{matrix}\right.\)
Nếu \(t=\frac{1}{2}\Leftrightarrow 2x=y\)
Thay vào PT đầu tiên:
\(2x^2+3x.2x+4x^2=12\)
\(\Leftrightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 2\) (tương ứng)
Nếu \(t=-5\Leftrightarrow x=-5y\)
Thay vào PT đầu tiên:
\(2(-5y)^2+3(-5y)y+y^2=12\)
\(\Leftrightarrow 36y^2=12\Leftrightarrow y^2=\frac{1}{3}\)
\(\Rightarrow y=\pm \sqrt{\frac{1}{3}}\Rightarrow x=\mp 5\sqrt{\frac{1}{3}}\) (tương ứng)
Vậy..........
Lời giải:
HPT \(\Rightarrow 11(2x^2+3xy+y^2)=12(x^2-xy+3y^2)\)
\(\Leftrightarrow 22x^2+33xy+11y^2=12x^2-12xy+36y^2\)
\(\Leftrightarrow 10x^2+45xy-25y^2=0\)
\(\Leftrightarrow 2x^2+9xy-5y^2=0(*)\)
Dễ thấy $y=0$ không phải một nghiệm của HPT. Đặt $x=ty$
\((*)\Leftrightarrow 2(ty)^2+9ty.y-5y^2=0\)
\(\Leftrightarrow y^2(2t^2+9t-5)=0\)
Vì $y\neq 0$ nên $2t^2+9t-5=0$
\(\Leftrightarrow (2t-1)(t+5)=0\Rightarrow \left[\begin{matrix} t=\frac{1}{2}\\ t=-5\end{matrix}\right.\)
Nếu \(t=\frac{1}{2}\Leftrightarrow 2x=y\)
Thay vào PT đầu tiên:
\(2x^2+3x.2x+4x^2=12\)
\(\Leftrightarrow x^2=1\Rightarrow x=\pm 1\Rightarrow y=\pm 2\) (tương ứng)
Nếu \(t=-5\Leftrightarrow x=-5y\)
Thay vào PT đầu tiên:
\(2(-5y)^2+3(-5y)y+y^2=12\)
\(\Leftrightarrow 36y^2=12\Leftrightarrow y^2=\frac{1}{3}\)
\(\Rightarrow y=\pm \sqrt{\frac{1}{3}}\Rightarrow x=\mp 5\sqrt{\frac{1}{3}}\) (tương ứng)
Vậy..........

Đề bài đâu bạn??
đề bài đâu hả bạn