Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử A = n^2 + 3n + 5 chia hết cho 121
=> 4A = 4n^2 + 12n + 20 chia hết cho 121
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1)
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11)
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2)
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí)
Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N
Gỉa sử tồn tại số tự nhiên n thỏa n2+3n+5n2+3n+5⋮⋮121.
=>4(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮1214(n2+3n+5)⋮121<=>[(2n+3)2+11]⋮121.
Mặt khác, n2+3n+5n2+3n+5 ⋮ 11 (vì chia hết cho 121) => (2n+3)^2⋮ 11
mà 11 là số tự nhiên nguyên tố nên (2n+3)^2 ⋮ 121
=> (2n+3)^2+11 ko chia hết chia het cho 121

a) n + 5 chia hết cho n - 2
=> ( n - 2 ) + 7 chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc Ư(7) = { -7 ; -1 ; 1 ; 7 }
n-2 | -7 | -1 | 1 | 7 |
n | -5 | 1 | 3 | 10 |
Vậy n = { -5 ; 1 ; 3 ; 10 )
b) Gọi d là ƯCLN(7n + 10 ; 5n + 7)
\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(7n+10\right)⋮d\\7\left(5n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}35n+50⋮d\\35n+49⋮d\end{cases}}\)
\(\Rightarrow\left(35n+50\right)-\left(35n+49\right)⋮d\)
\(\Rightarrow35n+50-35n-49⋮d\)
\(\Rightarrow1⋮d\Leftrightarrow d=1\)
=> ƯCLN(7n + 10 ; 5n + 7) = 1
=> 7n + 10 và 5n + 7 là hai số nguyên tố cùng nhau với mọi n thuộc N ( đpcm )
Bài làm:
a) \(\frac{n+5}{n-2}=\frac{\left(n-2\right)+7}{n-2}=1+\frac{7}{n-2}\)
Để \(\left(n+5\right)⋮\left(n-2\right)\) thì \(\frac{7}{n-2}\inℤ\)
\(\Rightarrow n-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Leftrightarrow n\in\left\{-5;1;3;9\right\}\)
b) Gọi \(\left(7n+10;5n+7\right)=d\)
\(\Rightarrow\hept{\begin{cases}7n+10⋮d\\5n+7⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}2\left(7n+10\right)⋮d\\2\left(5n+7\right)⋮d\end{cases}}\)
\(\Rightarrow14n+20-\left(10n+14\right)⋮d\)
\(\Leftrightarrow4n+6⋮d\) , mà \(5n+7⋮d\)
\(\Rightarrow5n+7-\left(4n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\pm1\)
=> 7n+10 và 5n+7 nguyên tố cùng nhau
=> đpcm

a) Xét 3(x + 4y) = 3x + 12y = (3x + 5y) + 7y
Nếu 3x + 5y chia hết cho 7 thì (3x + 5y) + 7y chia hết cho 7 tức 3(x + 4y) chia hết cho 7, mà (3;7) = 1. Nên x + 4y chia hết cho 7
Điều ngược lại đúng. Bạn tự lập luận nhé!
b) Xét 9(2x + 3y) = 18x + 27y = 2(9x + 5y) + 17y. Rồi lập luận tương tự câu a) nhé!
- Làm thì làm cho hết đi cậu ơi , Giúp người ta thì giúp đến nơi đến chốn chứ bạn ? :)

A = \(n^2+5n+10\)
Câu a ko bt trình bày kiểu j t cho cậu gợi ý nhé
a) Ta có n chia hết cho 5
=> \(n^2\) chia hết cho 5
Lại có \(n^2\) chia hết cho 5 ( cmt ) ; 5n chia hết cho 5 vs mọi n và 10 chia hết cho 5
=> \(n^2\) + 5n + 10 chia hết cho 5
=> A chia hết cho 5
Bạn tự trình bày cho rõ ràng nhé
b) Tham khảo ( hơi khác 1 chút)
https://h.vn/hoi-dap/question/110055.html
Học tốt @@
# CHiyuki Fujito
Để chứng minh biểu thức ( A = n(n-4) + 7n + 5 ) không chia hết cho 121 với mọi số nguyên ( n ), ta có thể xét tính đồng dư của biểu thức này theo modulo 121.
Trước hết, ta phân tích:
[ A = n2 + 3n + 5 ]
Ta xét các giá trị ( A ) theo modulo 121. Vì ( A ) là một đa thức bậc hai, nếu nó chia hết cho 121 thì phải tồn tại một số nguyên ( n ) sao cho:
[ n^2 + 3n + 5 \equiv 0 \pmod{121} ]
Tuy nhiên, do 121 là một số nguyên tố lũy thừa (( 121 = 11^2 )), việc tìm số nguyên ( n ) thỏa mãn phương trình đồng dư trên là không khả thi với mọi ( n ). Nếu ta kiểm tra theo modulo 11, ta sẽ thấy rằng ( A ) không thể bằng 0 theo modulo 121 với mọi ( n ), vì hệ số 5 làm cho phương trình không thể chia hết.
Điều này chứng tỏ rằng ( A ) không chia hết cho 121 với mọi số nguyên ( n ).
Đỗ Phú Trọng bạn làm cho hs lớp 6 đc ko
mình ko hiểu vài chỗ