Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Xét \(\Delta ACM\)và \(\Delta BCD\)có :
MC = DC ( gt )
\(\widehat{ACM}\)= \(\widehat{DCB}\)( cx cộng vs \(\widehat{MCB}\)
BC=Ac ( gt )
=> \(\Delta ACM=\Delta BCD\left(c-g-c\right)\)
b, \(BM.BM=3cm^2\)
\(\Rightarrow BM=\sqrt{3}\)
AD t/c Pi ta- go đảo, ta có :
\(MD^2=BM^2+BD^2\)
22 = \(\left(\sqrt{3}\right)^2+1^2\)
4 = 3 + 1 \(\Rightarrow\Delta MBD\)vuông
c, Xét \(\Delta BMD\)vuông tại B, ta có :
BD = \(\frac{1}{2}MD\)
\(\Rightarrow\widehat{BMD}\)= 30o , \(\widehat{CMD}\)= 60o ( vì \(\Delta CMD\)đều )
Ta có : \(\widehat{BMD}\)+ \(\widehat{CMD}\) = \(\widehat{BMC}\)
30o + 60o = 90o
Vì \(\Delta MDC\)đều \(\Rightarrow\widehat{MDC}\)= 60o
Ta có : \(\widehat{MBD}\)+ \(\widehat{BDM}\)+ \(\widehat{DMB}\)= 180o ( tổng 3 góc trong 1 \(\Delta\))
90o + \(\widehat{BDM}\)+ 30o = 180o
\(\widehat{BDM}\)= 60o
Mà \(\widehat{MDC}\)+ \(\widehat{BDM}\)= 60o + 60o = 120o
lại có : \(\Delta CAM=\Delta CBD\)(câu a ) => \(\widehat{AMC}\)= 120o
Ta có : \(\widehat{AMB}\)+ \(\widehat{BMC}\)+ \(\widehat{AMC}\)= 360o
\(\widehat{AMB}\)+ 90o + 120o = 360o
\(\widehat{AMB}\)= 1500
Mà \(\widehat{AMB}\)+ \(\widehat{BMD}=150^o+30^o=180^o\)
\(\Rightarrow\widehat{AMD}\)là góc bẹt
=> A, M,D thẳng hàng
d, Xét \(\Delta BMC\)vuông
BC2 = BM2 + MC2
= \(\left(\sqrt{3}\right)^2+4\)
= 7
=> \(BC=\sqrt{7}\)
Shv có cạnh BC là \(\sqrt{7}.\sqrt{7}=7\)

a) Gọi \(\Delta\)ABC vuông cân tại A có BC = 2 cm
Áp dụng định lý Pytago cho \(\Delta\)ABC vuông cân tại A ta có :
AB2 + AC2 = BC2
AB2 + AB2 = 2 ( Vì AB = AC)
2.AB2 = 4
=> AB2 = 2
=> AB = \(\sqrt{2}\)
Vậy AB = AC = \(\sqrt{2}\)(cm)
b) Gọi \(\Delta\)KFC vuông cân tại K có FC = \(\sqrt{2}\)(cm)
Áp dụng định lý Pytago cho \(\Delta\)KFC vuông cân tại K ta có :
FC2 = KF2 + KC2
(\(\sqrt{2}\))2 = 2. KF2 (vì KC = KF)
=> 2 = 2 . KF2
=> KF2 = 1
=> KF = 1 (cm)
Vậy KC = KF = 1 (cm)

ABAC=52⇒AB=52ACABAC=52⇒AB=52AC
Áp dụng định lí pytago vào tam giác ABC vuông tại A ta có:
AB2+AC2=BC2AB2+AC2=BC2
=>AB2+AC2=262 (1)
Thay AB=52ACAB=52AC vào (1) ta được:
(52AC)2+AC2=262⇒254AC2+AC2=676(52AC)2+AC2=262⇒254AC2+AC2=676
=>294AC2=676⇒AC2≈93,2⇒AC≈9,7
AB/AC = 5/2 ⇒ AB = 5/2AC
Áp dụng định lí pytago vào tam giác ABC vuông tai A ta có:
\(AB^2+AC^2=BC^2\) \(\Rightarrow\frac{25}{4}AC^2+AC^2=26^2\) \(\Rightarrow\frac{29}{4}AC^2=676\) \(\Rightarrow AC^2\approx93,2\left(cm\right)\)
⇒ AC ≈ 9,7(cm)
=> AB = 5/2 AC = 5/2 . 9,7 = 24,25(cm)

Bài làm
Theo công thức tính diện tích hình thang:
Đáy lớn và đáy nhỏ
Ta mang cộng vào
Cộng vào nhân với chiều cao
Chia đôi lấy nửa thế nào cũng ra.
Vậy, theo đề bài trên, đáp án đúng là:
D.\(\frac{1}{2}.\left(a+b\right).h\)
# Chúc bạn học tốt #
(Các công thứ ĐÚNG nói về diện tích hình thang là :
(B) \(\left(\frac{a+b}{2}\right)\times h\)
(Diện tích của hình thang bằng chiều cao nhân với trung bình cộng của hai cạnh đáy)
(C) \(\frac{(a+b)\times h}{2}\)
(Diện tích của hình thang bằng tổng độ dài 2 cạnh đáy nhân với chiều cao rồi chia cho 2)
(D) \(\frac{1}{2}\times\left(a+b\right)\times\text{h}\)
(Diện tích của hình thang bằng đường trung bình nhân với chiều cao)
Okay !
Diệu Linh học lớp mấy vậy tui học lớp 4a6 nha ,ở lớp tui có bạn tên là Nguyễn Thị Diệu Linh đó.
Tên nghe giống bạn lắm