K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4

11/35


28 tháng 4

\(\dfrac35-\dfrac27\)

\(=\dfrac{21}{35}-\dfrac{10}{35}\)

\(=\dfrac{21-10}{35}\)

\(=\dfrac{11}{35}\)

14 tháng 5 2017

câu a
\(A=\frac{33.10^3}{2^3.5.10^3+7000}=\frac{33.10^3}{2^3.5.10^3+7.10^3}=\frac{33.10^3}{10^3\left(2^3.5+7\right)}=\frac{33.10^3}{10^3.47}=\frac{33}{47}\)
\(B=\frac{3774}{5217}=\frac{34.111}{47.111}=\frac{34}{47}\)
\(\Rightarrow\frac{33}{47}< \frac{34}{47}\)
=> A<B

a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)

ta có :

 \(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)

 \(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)

\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)

Vậy \(A< 3\)

2 tháng 5 2019

a. Ta có :

\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)

\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)

\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)

Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)

Vậy \(A< 3\)

26 tháng 4 2017

kazuto kirigaya thật là bt làm ko đó ko bt thì nói đi còn bt thì làm đi

26 tháng 4 2017

trời ơi bài dễ thế này tự làm đi còn hỏi

3 tháng 9 2016

a)(25.5-52.2):(5.2)-3
= (25.5-25.2):10-3
= 25.(5-2):10-3
= 25.3:10-3
=75:10-3=7,5-3=4,5
b)(6.52 -137).2-23.(7+3)(Sai đề)
c)23-53 :52 +12.22
= 8-125:25+12.4
= 8-5+12.4=8-5+48=3+48=51
d)2.[(95+52:5):22 +180] -22.102
= 2.[(95+25:5):4+180]-4.100
= 2.[(95+5):4+180]-400
= 2.(100:4+180)-400
= 2. (25+180)-400
= 2. 205-400
= 410-400=10
e)27.22+54:53.24-3.25
= 128+625:125.24-3.32
= 128+5.24-96
= 128+120-96
= 248-96=152
f)2.[(7-3:32):22+99]-100
=2.[(7-27:9):4+99]-100
=2.[(7-3):4+99]-100
=2. (4:4+99)-100
=2.  (1+99)-100
=2.   100-100
= 200-100
=100
Chúc Bạn Học Tốt ^_^

19 tháng 10 2017

\(A=5+5^2+5^3+5^4+...+5^{2004}\)

\(5A=5^2+5^3+5^4+5^5+...+5^{2005}\)

\(5A-A=\left(5^2+5^3+5^4+5^5+...+5^{2005}\right)-\left(5+5^2+5^3+5^4+...+5^{2004}\right)\)

\(4A=5^{2005}-5\)

\(A=\dfrac{5^{2005}-5}{4}\)

\(B=7^1+7^2+7^3+....+7^{2015}\)

\(7B=7^2+7^3+7^4+....+7^{2016}\)

\(7B-B=\left(7^2+7^3+7^4+...+7^{2016}\right)-\left(7+7^2+7^3+....+7^{2015}\right)\)

\(6B=7^{2016}-7\)

\(B=\dfrac{7^{2016}-7}{6}\)

\(C=4^5+4^6+4^7+...+4^{2016}\)

\(4C=4^6+4^7+4^8+...+4^{2017}\)

\(4C-C=\left(4^6+4^7+4^8+...+4^{2017}\right)-\left(4^5+4^6+4^7+...+4^{2016}\right)\)

\(3C=4^{2017}-4^5\)

\(C=\dfrac{4^{2017}-4^5}{3}\)

19 tháng 10 2017

A = 5 + 52 + 53 + 54 + ... + 52004

5A = 52 + 53 + 54 + 55 + ... + 52005

5A - A = 52005 - 5

4A = 52005 - 5

A = (52005 - 5) : 4

B = 71 + 72 + 73 + ... + 72015

7B = 72 + 73 + 74 + ... + 72016

7B - B = 72016 - 7

6B = 72016 - 7

B = (72016 - 7) : 6

C = 45 + 46 + 47 + ... + 42016

4C = 46 + 47 + 48 + ... + 42017

4C - C = 42017 - 45

3C = 42017 - 45

C = (42017 - 45) : 3

18 tháng 7 2017

a) \(6\dfrac{5}{7}-\left(1\dfrac{3}{4}+2\dfrac{5}{7}\right)\)

\(=6\dfrac{5}{7}-1\dfrac{3}{4}-2\dfrac{5}{7}\)

\(=\left(6\dfrac{5}{7}-2\dfrac{5}{7}\right)-1\dfrac{3}{4}\)

\(=4-1\dfrac{3}{4}\)

\(=3\dfrac{3}{4}\)

18 tháng 7 2017

b) \(7\dfrac{5}{11}-\left(2\dfrac{3}{7}+3\dfrac{5}{11}\right)\)

\(=7\dfrac{5}{11}-2\dfrac{3}{7}-3\dfrac{5}{11}\)

\(=\left(7\dfrac{5}{11}-3\dfrac{5}{11}\right)-2\dfrac{3}{7}\)

\(=4-2\dfrac{3}{7}\)

\(=2\dfrac{3}{7}\)

20 tháng 5 2018

a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)

Đặt \(B=1+7+7^2+...+7^{14}\)

\(\Rightarrow7B=7+7^2+...+7^{15}\)

\(\Rightarrow7B-B=6B=7^{15}-1\)

\(\Rightarrow B=\frac{7^{15}-1}{6}\)

\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)

Tự làm tiếp nha

21 tháng 5 2018

bạn giải nốt đi

12 tháng 6 2018

b, Ta có:\(\dfrac{1+3+3^2+.....+3^{10}}{1+3+3^2+.....+3^9}\) \(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)\(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3.\left(1+3+3^2+...+3^9\right)}{1+3+3^2+...+3^9}\)

\(=\dfrac{1}{1+3+3^2+...+3^9}+3< 4\)

\(\Rightarrow\) \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< 4\) \(\left(1\right)\)

Ta có :\(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5+5^2+...+5^{10}}{1+5+5^2+....+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5.\left(1+5+5^2+...+5^9\right)}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+5>5\)

\(\Rightarrow\) \(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}>5\) \(\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\)

\(\Rightarrow\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

Vậy \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

12 tháng 6 2018

a, Đặt \(A\)\(=\dfrac{7^{15}}{1+7+7^2+...+7^{14}}\)

\(\Rightarrow\) \(\dfrac{1}{A}\) \(=\dfrac{1+7+7^2+...+7^{14}}{7^{15}}=\dfrac{1}{7^{15}}+\dfrac{7}{7^{15}}+\dfrac{7^2}{7^{15}}+...+\dfrac{7^{14}}{7^{15}}\)

\(=\dfrac{1}{7^{15}}+\dfrac{1}{7^{14}}+\dfrac{1}{7^{13}}+....+\dfrac{1}{7}\)

Đặt \(B=\dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)

\(\Rightarrow\dfrac{1}{B}=\dfrac{1+9+9^2+...+9^{14}}{9^{15}}=\dfrac{1}{9^{15}}+\dfrac{9}{9^{15}}+\dfrac{9^2}{9^{15}}+...+\dfrac{9^{14}}{9^{15}}\)

\(=\dfrac{1}{9^{15}}+\dfrac{1}{9^{14}}+\dfrac{1}{9^{13}}+...+\dfrac{1}{9}\)

\(\dfrac{1}{7^{15}}>\dfrac{1}{9^{15}};\dfrac{1}{7^{14}}>\dfrac{1}{9^{14}};\dfrac{1}{7^{13}}>\dfrac{1}{9^{13}};....;\dfrac{1}{7}>\dfrac{1}{9}\)

\(\Rightarrow\dfrac{1}{A}>\dfrac{1}{B}\) \(\Rightarrow A< B\)

Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}>\dfrac{9^{15}}{1+9+9^2+....+9^{14}}\)

3 tháng 5 2019

Giúp Mik ik mai nộp oy

3 tháng 3

\(\frac27\times5\frac14-\frac27\times3\frac14\)

=\(\frac27\times\left(5\frac14-3\frac14\right)\)

=\(\frac27\times\left(\left(5-3\right)+\left(\frac14-\frac15\right)\right)\)

=\(\frac27\times\left(2+0\right)\)

=\(\frac27\times2\)

=\(\frac47\)

9 tháng 8 2016

Bạn ơi ; tách từng bài ra cho dễ làm :

1.7C-C= 7^2016-7

  C  = ( 7^2016-7 ) :6

\(C=7+7^2+7^3+.....+7^{2016}\)

\(\Rightarrow7C=7^2+7^3+7^4+...+7^{2017}\)

\(\Rightarrow7C-C=\left(7^2+7^3+.....+7^{2017}\right)-\left(7+7^2+7^3+....+7^{2016}\right)\)

\(\Rightarrow6C=2^{2017}-7\)

\(\Rightarrow C=\frac{2^{2017}-7}{6}\)