Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, xét ΔABDvàΔHBDΔABDvàΔHBD có
AD chung
ABDˆ=HBDˆABD^=HBD^ ( AD là tia phân giác của ABCˆABC^ )
Aˆ=Hˆ=900A^=H^=900
=> ΔΔ ABD = ΔΔHBD ( ch - gn )
b, xét ΔKADvàΔCHDΔKADvàΔCHD có
AK = HC ( gt)
AD = DH ( câu a )
Aˆ=Hˆ=900A^=H^=900
=> ΔAKD=ΔHDCΔAKD=ΔHDC
=> ADKˆ=HDCˆADK^=HDC^ mà 2 góc này ở vị trí đối đỉnh
=> đpcm
a, Xét \(\Delta\)ABD và \(\Delta\)HBD có
AD_chung
^ABD = ^HBD ( AD là tia p/g của ^ABC )
^A = ^H ( = 900 )
=> \(\Delta\)ABD = \(\Delta\)HBD (ch-gn)
b, Xét \(\Delta\)KAD và \(\Delta\)CHD có
AK = HC (gt)
AD = DH (câu a)
^A = ^H ( = 900 )
=> \(\Delta\)AKD =\(\Delta\)HDC
=> ^ADK = ^HDC (đđ)
Vậy 3 điểm K,D,H thẳng hàng

a) Xét \(\Delta ABD\)và \(\Delta HBD\)có:
\(\widehat{A}=\widehat{H}=90^o;BDchung;\widehat{ABD}=\widehat{DBH}\)
\(\Rightarrow\Delta ABD=\Delta HBD\left(CH-GN\right)\)
b) c/m: \(\Delta KDA=\Delta CDH\left(g.c.g\right)\)
\(\Rightarrow\widehat{ADK}=\widehat{HDC}\)(2 góc tương ứng)
Ta có: \(\widehat{HDC}+\widehat{ADH}=180^o\)(kề bù)
\(\Rightarrow\widehat{ADH}+\widehat{ADK}=180^o\)
\(\Rightarrow\)K,D,H thẳng hàng.

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
=>ΔDAK=ΔDHC
=>góc ADK=góc HDC
=>góc HDC+góc KDC=180 độ
=>K,D,H thẳng hàng

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.

B A D C E H K
câu a ta có AB=BE, BD chung và góc ABD=BDE do BD là phân giác của ABC
do đó hai tam giác ABD và EBD bằng nhau theo trường hợp cạnh góc cạnh,
b, do từ kết quả câu a ta có DEB=DA B=90 độ do đó DE vuông với EB , mà AH vuông góc với EB nên
DE //AH.
c. ta có \(KB=KA+AB=EC+EB=BC\)
mà AB=BE và góc B chung
do đó hai tam giác ABC và EBK bằng nhau theo trường hợp cạnh góc cạnh.
. dễ thấy AM và AB là tia phân giác của hai góc kề bù
do đó chúng vuông góc với nhau
nên tam giác DBM vuông tại D do đó \(\widehat{ABD}+\widehat{AMD}=90^0\)

a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\hat{ABD}=\hat{HBD}\)
Do đó: ΔBAD=ΔBHD
b: ΔBAD=ΔBHD
=>DA=DH
Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
Do đó: ΔDAK=ΔDHC
=>DK=DC
=>ΔDKC cân tại D