
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ta co n^2+3=n(n-1)+n+3=n(n-1)+(n-1)+4=(n-1)(n+1)+4
do do de n^2+3 chia het cho n-1 thi n-1 phai thuoc uoc cua 4
bang gia tri
n-1 | -1 | 1 | -2 | 2 |
n | 0 | 2 | -1 | 3 |
do do n thuoc 0,2,-1,3 thi n^2+3 chia het n-1

Ta có \(n^2+3=n^2-1+4\)
mà \(n^2-1\)\(⋮\) \(n-1\)nên 4 chia hết cho n - 1
=> n - 1 \(\in\){ -4 ; - 2; - 1 ; 1 ; 2 ; 4}
=> n \(\in\){ -3; -1; 0; 2; 3; 5}
\(n^2+3⋮n-1\)
\(n^2-1+4⋮n-1\)
vì \(n^2-1⋮n-1\)
=>\(4⋮n-1\)
=> \(n-1\inƯ\left(4\right)\)
=. \(n-1\in[1,2,4,-1,-2,-4]\)
=> \(n\in[2,3,5,0,-1,-3]\)
Vậy ....


3;6;9;12;15;18;....30;33;36 Mỗi số cộng với 3 từ 3 cho đến 36

Do n là số nguyên dương nên n có 3 dạng \(3k;3k+1;3k+2\) với \(k\inℕ^∗\)
Với n=3k Ta có:\(2^n-1=2^{3k}-1=8^k-1^k⋮7\)
Với n=3k+1 ta có:\(2^n-1=2^{3k+1}-1=2\cdot2^{3k}-1=2\cdot8^k-1=2\left(8^k-1\right)+1\) chia 7 dư 1.
Với n=3k+2,ta có:\(2^n-1=2^{3k+2}-1=4\cdot2^{3k}-1=4\cdot8^k-1=4\left(8^k-1\right)+3\) chia 7 dư 3.
Vậy n=3k thì 2n-1 chia hết cho 7.
$$$$Chứng minh 8k-1 chia hết cho 7.(Quy nạp)
Với k=1 ta có 7 chia hết cho 7.(TM)
Giả sử bài toán đúng với k=p khi đó:
\(A_p=8^p+1\) ta cần chứng minh bài toán đúng với n=p+1 tức là \(A_{p+1}=8^{k+1}+1\).Thật vậy!
Ta có:\(A_{p+1}=8^{k+1}-1=8\cdot8^k-1=8\left(8^k-1\right)+7=8\cdot A_k+7⋮7\)
\(\Rightarrow A_{p+1}⋮7\Rightarrowđpcm\)


a) \(3^{n+2}-2^{n+2}+3^n-2^n\)
\(\Rightarrow\left(3^n\cdot3^2+3^n\right)-\left(2^n\cdot2^2+2^n\right)\)
\(\Rightarrow3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(\Rightarrow3^n\cdot10-2^n\cdot5\)
\(\Rightarrow3^n\cdot10-2^{n-1}\cdot\left(2\cdot5\right)\)
\(\Rightarrow10\left(3^n-2^n\right)\) chia hết cho 10
b) \(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(\Rightarrow3^n\cdot3^3+3^n\cdot3+2^n\cdot2^3+2^n\cdot2^2\)
\(\Rightarrow3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)
\(\Rightarrow3^n\cdot30+2^n\cdot12\)
\(\Rightarrow3^n\cdot6\cdot5+2^n\cdot2\cdot6\)
\(\Rightarrow6\left(3^n\cdot5+2^n\cdot2\right)\) chia hết cho 6

Ta có:n2+3=n2-12+4=(n+1)(n-1)+4
Để n2+3 chia hết cho n-1 thì (n+1)(n-1)+4 chia hết cho n-1
Mà(n+1)(n-1)chia hết cho n-1 .Nên 4 chia hết cho n-1
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta có bảng giá trị:
n-1 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -3 | -1 | 0 | 2 | 3 | 5 |
Vậy \(n\in\left\{-3;-1;0;2;3;5\right\}\)
Ta có: \(10n^2+n-10\) ⋮n-1
=>\(10n^2-10n+11n-11+1\) ⋮n-1
=>1⋮n-1
=>n-1∈{1;-1}
=>n∈{2;0}