
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có công thức :
\(\frac{a}{b}>\frac{a+c}{b+c}\)\(\left(\frac{a}{b}>1;a,b,c\inℕ^∗\right)\)
\(A=\frac{99^{2015}+1}{99^{2014}+1}>\frac{99^{2015}+1+98}{99^{2014}+1+98}=\frac{99^{2015}+99}{99^{2014}+99}=\frac{99\left(99^{2014}+1\right)}{99\left(99^{2013}+1\right)}=\frac{99^{2014}+1}{99^{2013}+1}=B\)
\(\Rightarrow\)\(A>B\)
Chúc bạn học tốt ~

A= 99^18+1 / 99^19+1 < 99^18 +1 +98 / 99^19 +1+98 =99^18+99 / 99^19+99
= 99(99^17 + 1) / 99(99^18+1)
= 99^17+1 / 99^18+1 = B
=> A<B

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(\Leftrightarrow3A=1+\frac{1}{3}+\frac{1}{3^{^2}}+...+\frac{1}{3^{98}}\)
\(\Leftrightarrow3A-A=1-\frac{1}{3^{99}}\)
\(\Leftrightarrow2A=1-\frac{1}{3^{99}}\)
\(\Leftrightarrow A=\left(1-\frac{1}{3^{99}}\right)\div2\)

100
100