Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

VTCP là (-1;2)
Phương trình chính tắc là: \(\dfrac{x-1}{-1}=\dfrac{y-0}{2}=\dfrac{y}{2}\)

a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6

1: Gọi I(0,y) là tâm cần tìm
Theo đề, ta có: IA=IB
=>\(\left(0-3\right)^2+\left(5-y\right)^2=\left(1-0\right)^2+\left(-7-y\right)^2\)
=>y^2-10y+25+9=y^2+14y+49+1
=>-10y+34=14y+50
=>-4y=16
=>y=-4
=>I(0;-4)
=>(x-0)^2+(y+4)^2=IA^2=90
2: Gọi (d1) là đường thẳng cần tìm
Vì (d1)//(d) nên (d1): 4x+3y+c=0
Theo đề, ta có: d(I;(d1))=3 căn 10
=>\(\dfrac{\left|0\cdot4+\left(-4\right)\cdot3+c\right|}{5}=3\sqrt{10}\)
=>|c-12|=15căn 10
=>\(\left[{}\begin{matrix}c=15\sqrt{10}+12\\c=-15\sqrt{10}+12\end{matrix}\right.\)

a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).
b) Ta có: \(\overrightarrow {{n_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\). Phương trình đường thẳng a là:
\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)
c) Ta có: \(\overrightarrow {{u_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}} = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:
\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)

b: vecto AB=(-4;-2)
=>VTPT là (2;4)=(1;2)
=>PTTQ của AB là 1(x-1)+2(y-6)=0
=>x-1+2y-12=0
=>x+2y-13=0
Vì (d)//AB nên (d): x+2y+c=0
Thay x=0 và y=3 vào (d), ta được:
c+0+6=0
=>c=-6
=>x+2y-6=0

Lời giải:
a)
Gọi pt đường thẳng $BC$ là $y=ax+b$
Ta có: \(\left\{\begin{matrix} -4=a+b\\ -2=3a+b\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=1\\ b=-5\end{matrix}\right.\)
Vậy pt tổng quát của đường thẳng $BC$ là:
\(y=x-5\Leftrightarrow x-y-5=0\)
b)
Đường thẳng $d:3x+y-5=0$ có vecto pháp tuyến là $(3,1)$ thì vecto chỉ phương là $(-1,3)$
Vì $\Delta$ song song với $(d)$ nên vecto chỉ phương của $\Delta$ cũng là $(-1,3)$
Mà $\Delta$ chứa $A$ nên phương trình tham số của $\Delta$ là:
\(\left\{\begin{matrix} x=-2-t\\ y=3+3t\end{matrix}\right.\)
\(\overrightarrow{BC}=\left(4+3;2-1\right)=\left(7;1\right)\)
=>vecto pháp tuyến là (-1;7)
=>Đường thẳng đi qua A và song song với BC sẽ có vecto pháp tuyến là (-1;7)
Phương trình của đường thẳng đi qua A và song song với BC là:
-1(x-1)+7(y+2)=0
=>-x+1+7y+14=0
=>-x+7y+15=0
=>a=-1;b=7;c=15
=>T=a+b+c=-1+7+15=15+6=21
1