
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)
\(A=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(1+2\right)\)
\(A=3^{n+1}.10+2^{n+2}.3\)
\(A=6\left(3^n.5\right)+6.2^{n+1}\)
\(A=6\left(3^n.5+2^{n+1}\right)⋮6\)
Vậy A chia 6 dư 0
Ta có:\(A=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)
\(A=3^n\cdot3^3+2^n\cdot2^3+3^n\cdot3+2^n\cdot2^2\)
\(A=3^n\cdot27+2^n\cdot8+3^n\cdot3+2^n\cdot4\)
\(A=3^n\cdot30+2^n\cdot12\)
\(A=6\left(3^n\cdot5+2^n\cdot2\right)⋮6\)
Vậy số dư của A khi chia cho 6 là 0

1, Để A chia hết cho 5 thì chữ số tận cùng của A là 0 và 5
\(\Rightarrow\)c phải là 5
Chữ số tận cùng là 5 chia hết cho 5 rồi thì còn lại 2 số đầu có thể xếp lên a hoặc là b
\(\Rightarrow\)A có thể là 1955 hoặc là 9155

xét n chia cho 3 dư 1 suy ra n=3q+1 (q là thương )
suy ra n^2=(3q+1)^2=(3q)^2+1^2+2.3q.1=9q^2+1+6q
ta có 9q^2+6q chia hết cho 3,mà 1 chia 3 dư 1
từ 2 điều trên suy ra n^2 chia 3 dư 1
xét n chia 3 dư suy ra n=3p+2 (p là thương)
suy ra n^2=(3p+2)^2=(3p)^2+2^2+2.3p.2=9p^2+4+12p
mà 9p^2+12p chia hết cho 3,mà 4 chia 3 dư 1
từ 2 điều trên suy ra n^2 chia 3 dư 1
vậy với mọi n thuộc N và n ko chia hết cho 3,n^2 luôn chia 3 dư 1
có chỗ nào ko hieu bn cứ hỏi mình,tab cho mình nếu đung nha

Bài 1 :
Ta có :
a chia 3 dư 1 ⇒a=3k+1⇒a=3k+1
b chia 3 dư 2 ⇒b=3k1+2⇒b=3k1+2 (k;k1∈N)(k;k1∈N)
ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2
Mà 3k.k1+2.3k+3.k1⋮33k.k1+2.3k+3.k1⋮3
⇒3k.k1+2.3k+3.k1+2⇒3k.k1+2.3k+3.k1+2 chia 3 dư 2
⇒ab⇒ab chia 3 dư 2 →đpcm→đpcm
Bài 2 :
Ta có :
n(
Bài 1:
a=3n+1
b= 3m+2
a*b= 3( 3nm+m+2n ) + 2 số này chia 3 sẽ dư 2.
Bài 2:
n(2n-3)-2n(n+1)
=2n^2-3n-2n^2-2n
= -5n
-5n chia hết cho 5 với mọi số nguyên n vì -5 chia hết cho 5
vậy n(2n-3)-2n(n+1) chia hết cho 5

Số hạng + Số hạng sao lại dư được bạn?
3333333
Rrrrrrr