Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Đúng
b)Đúng
c)Sai vì nghiệm không thỏa mãn ĐKXĐ
d)Sai vì có 1 nghiệm không thỏa mãn ĐKXĐ

Áp dụng BĐT : ( a + b + c )2 \(\ge\)3 ( ab + bc + ac )
Ta có : \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge\frac{3\left(xy+y+x\right)}{xy+y+x}=3\)
đặt \(\frac{\left(x+y+1\right)^2}{xy+y+x}=A\)
ta có : \(A+\frac{1}{A}=\frac{8A}{9}+\frac{A}{9}+\frac{1}{A}\ge\frac{8.3}{9}+2\sqrt{\frac{A}{9}.\frac{1}{A}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)
Ta có \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
=> \(a^2+b^2+c^2\ge ab+bc+ac\)=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)
Áp dụng ta được
\(\left(x+y+1\right)^2\ge3\left(x+y+xy\right)\)=> \(\frac{\left(x+y+1\right)^2}{xy+y+x}\ge3\)
Đặt \(\frac{\left(x+y+1\right)^2}{x+y+xy}=t\)(\(t\ge3\))
Khi đó
\(VT=t+\frac{1}{t}=\left(\frac{t}{9}+\frac{1}{t}\right)+\frac{8}{9}t\ge\frac{2}{3}+\frac{8}{9}.3=\frac{10}{3}\)
Dấu bằng xảy ra khi \(\hept{\begin{cases}t=3\\x=y=1\end{cases}}\)=> x=y=1
Lưu ý
Nhiều người sẽ nhầm \(VT\ge2\)
Khi đó dấu bằng \(\left(x+y+1\right)^2=xy+x+y\)không xảy ra

3/ Ta có:
\(x+y+z=0\)
\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)
\(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Ta có:
\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)
\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)
\(=-ax^2-by^2-cz^2\)
\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Leftrightarrow ax^2+by^2+cz^2=0\)
1/ Đặt \(a-b=x,b-c=y,c-z=z\)
\(\Rightarrow x+y+z=0\)
Ta có:
\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)
\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

\(\left(x+\frac{1}{3}\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{3}=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{3}\\x=2\end{cases}}\)
Vậy D là đáp án

Bài 1 :
a, \(4\left(-3\text{x}\right)yx^5=-12x^6y\)
Hệ số : -12 , Biến : \(x^6y\)
b, \(7\text{x}y^5\left(-5\text{x}^3y^2\right)=-35\text{x}^4y^7\)
Hệ số : -35 , Biến : \(x^4y^7\)
c, \(-\left[-23\text{a}b\text{x}^3\left(-y\right)\right]=-23ab\text{x}^3y\)
Hệ số : -23 , Biến : \(ab\text{x}^3y\)
d, \(\left(-3\text{a}y^3\right)\left(-5b^2xy\right)=3\text{a}y^3\cdot5b^2xy=15\text{a}b^2xy^4\)
Hệ số : 15 , Biến : \(ab^2xy^4\)
Bài 2 :
a, \(x^4y^5z\)có Bậc là 10
b, \(-\left(-7\text{x}^7y\right)=7\text{x}^7y\)có bậc là 8
c,
b, \(-41\left(x^3y^2\right)^2=-41\text{x}^6y^4\)có bậc là 10
d, \(-2\frac{1}{3}x^3\left(xy^2\right)^3=-\frac{7}{3}x^3.x^3.y^6=-\frac{7}{3}x^6y^6\)có bậc là 12

Đặt \(A=\frac{\left(a+b\right)^2}{ab}+\frac{\left(b+c\right)^2}{bc}+\frac{\left(c+a\right)^2}{ca}=\frac{a^2+2ab+b^2}{ab}+\frac{b^2+2bc+c^2}{bc}+\frac{c^2+2ac+c^2}{ca}\)
\(=\frac{a}{b}+2+\frac{b}{a}+\frac{b}{c}+2+\frac{c}{b}+\frac{c}{a}+2+\frac{a}{c}=6+a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{a}+\frac{1}{c}\right)+c\left(\frac{1}{b}+\frac{1}{a}\right)\)
\(\ge6+\frac{4a}{b+c}+\frac{4b}{c+a}+\frac{4c}{a+b}\ge6+2\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+b}\right)+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
\(\ge6+2\cdot\frac{3}{2}+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=9+2\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\)
Dấu "=" xảy ra <=> a=b=c
3) Toán (TH) – Khẳng định về nghiệm không tầm thường của hàm Zet a Riemann
]