
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Viết các số sau dười dạng số thập phân
7/10
7/100
\(6\frac{38}{100}\)
2014/1000
3/2
2/5
5/8
\(1\frac{1}{4}\)

7/10 = 0,7
7/100 = 0,07
6 38/100 = 638/100 = 6,38
2014/1000 = 2,014
3/2 = 15/10 = 1,5
2/5 = 4/10 = 0,4
5/8 = 625/1000 = 0,625
1 1/4 = 5/4 = 125/100 =1,25
7/10=0,7
7/100=0,07
\(6\frac{38}{100}\)=319/50=6,38
2014/1000=2,014
3/2=1,5
2/5=0,4
5/8=0,625
\(1\frac{1}{4}\)=5/4=1,25

4,71 ; 54,06 ; 8,025 ; 19,004
14,2 ; 5,43 ; 7,389 ; 0,085
2,5 ; 3,6 ; 1,34 ; 5,8

a)27,4Đ
b)480,5Đ
c)2,3S
d)6,003S
e)28,5S
h)4,65S
i)0,29Đ
g)8,60 S

SO CAC SO LA:
(1000-1):1+1=1000
SO CAP:1000:2=500(CẶP)
TỔNG CÁC SỐ LÀ:(1000+1)*500=500500
DAP SO:500500.

\(\dfrac{7}{10}=0,7;\dfrac{7}{100}=0,07;6\dfrac{38}{100}=6,38;\dfrac{2014}{1000}=2,014;\dfrac{3}{2}=1,5;\dfrac{2}{5}=0,4;\dfrac{5}{8}=0,625;1\dfrac{1}{4}=1,25;6\dfrac{38}{100}=6,38\)

1) \(4\frac{3}{10}=\frac{43}{10};21\frac{7}{100}=\frac{2107}{100};7\frac{39}{100}=\frac{739}{100};6\frac{123}{1000}=\frac{6123}{1000}\)
2)\(a,5\frac{2}{10}+7\frac{1}{10}=\frac{52}{10}+\frac{71}{10}=\frac{123}{10}\)
\(b,5\frac{6}{7}-3\frac{5}{7}=\frac{41}{7}-\frac{26}{7}=\frac{15}{7}\)
\(c,8\frac{3}{5}x2\frac{6}{7}=\frac{43}{5}x\frac{20}{7}=\frac{172}{7}\)
\(d,1\frac{3}{10}:5\frac{7}{8}=\frac{13}{10}:\frac{47}{8}=\frac{13}{10}x\frac{47}{8}=\frac{611}{80}\)
3) \(7\frac{9}{10}và4\frac{9}{10}\)
Ta có: \(7\frac{9}{10}=\frac{79}{10};4\frac{9}{10}=\frac{49}{10}\)
Suy ra: \(\frac{79}{10}>\frac{49}{10}hay7\frac{9}{10}>4\frac{9}{10}\)
\(6\frac{3}{10}và6\frac{5}{9}\)
Ta có: \(6\frac{3}{10}=\frac{63}{10};6\frac{5}{9}=\frac{59}{9}\)
Suy ra: \(\frac{63}{10}>\frac{59}{9}hay6\frac{3}{10}>6\frac{5}{9}\)

5050 + X x 15 = 1000
=> X x 15 = -4050
Vậy x=-4050 : 15 = -270
\(1\cdot2\cdot3\cdot\ldots\cdot1000=x:100\)
\(1\cdot2\cdot3\cdot\ldots\cdot1000\cdot100=x\)
\(\Rightarrow x=402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000\) Vậy x=402387260077093773543702433923003985719374864210714632543799910429938512398629020592044208486969404800479988610197196058631666872994808558901323829669944590997424504087073759918823627727188732519779505950995276120874975462497043601418278094646496291056393887437886487337119181045825783647849977012476632889835955735432513185323958463075557409114262417474349347553428646576611667797396668820291207379143853719588249808126867838374559731746136085379534524221586593201928090878297308431392844403281231558611036976801357304216168747609675871348312025478589320767169132448426236131412508780208000261683151027341827977704784635868170164365024153691398281264810213092761244896359928705114964975419909342221566832572080821333186116811553615836546984046708975602900950537616475847728421889679646244945160765353408198901385442487984959953319101723355556602139450399736280750137837615307127761926849034352625200015888535147331611702103968175921510907788019393178114194545257223865541461062892187960223838971476088506276862967146674697562911234082439208160153780889893964518263243671616762179168909779911903754031274622289988005195444414282012187361745992642956581746628302955570299024324153181617210465832036786906117260158783520751516284225540265170483304226143974286933061690897968482590125458327168226458066526769958652682272807075781391858178889652208164348344825993266043367660176999612831860788386150279465955131156552036093988180612138558600301435694527224206344631797460594682573103790084024432438465657245014402821885252470935190620929023136493273497565513958720559654228749774011413346962715422845862377387538230483865688976461927383814900140767310446640259899490222221765904339901886018566526485061799702356193897017860040811889729918311021171229845901641921068884387121855646124960798722908519296819372388642614839657382291123125024186649353143970137428531926649875337218940694281434118520158014123344828015051399694290153483077644569099073152433278288269864602789864321139083506217095002597389863554277196742822248757586765752344220207573630569498825087968928162753848863396909959826280956121450994871701244516461260379029309120889086942028510640182154399457156805941872748998094254742173582401063677404595741785160829230135358081840096996372524230560855903700624271243416909004153690105933983835777939410970027753472000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000