Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)

Đặt \(13p+1=n^3\left(n\in N\right)\)
\(\Leftrightarrow13p=n^3-1\)
\(\Leftrightarrow13p=\left(n-1\right)\left(n^2+n+1\right)\)
Trường hợp 1: \(n-1=13\forall n^2+n+1=p\)
\(\Leftrightarrow n=14\)
hay \(p=14^2+14+1=196+14+1=211\)(nhận)
Trường hợp 2: \(n-1=p\forall n^2+n+1=p\)
\(\Leftrightarrow n^2+2=13-p\)
\(\Leftrightarrow\left(p+1\right)^2=11-p\)
\(\Leftrightarrow p=2\)(nhận)
Vậy: \(p\in\left\{2;211\right\}\)

Bài 1: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$
Theo bài ra ta có:
$\overline{ab}-\overline{ba}=10a+b-(10b+a)=9(a-b)$ là 1 scp.
Mà $9$ cũng là 1 scp nên để $9(a-b)$ là scp thì $a-b$ là scp.
$a,b$ là các số tự nhiên có 1 chữ số nên $a-b<10$
$\Rightarrow a-b\in\left\{0,1,4,9\right\}$
Nếu $a-b=0$ thì $a=b$. Ta có các số $11,22,33,44,55,....,99$ đều thỏa mãn.
Nếu $a-b=1$ thì $a=b+1$. Ta có các số $10, 21,32,43,54,65,76,87,98$ đều thỏa mãn.
Nếu $a-b=4$ thì $a=b+4$. Ta có các số $40, 51, 62, 73, 84, 95$ đều thỏa mãn
Nếu $a-b=9$ thì $a=b+9$. Ta có số $90$ thỏa mãn.
Bài 2: Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$\overline{ab}+\overline{ba}=10a+b+10b+a=11(a+b)$
Để tổng này là scp thì $a+b=11m^2$ với $m$ là số tự nhiên.
$\Rightarrow a+b\vdots 11$.
Mà $a,b$ là số tự nhiên có 1 chữ số nên $a+b< 20$
$\Rightarrow a+b=11$
$\Rightarrow (a,b)=(2,9), (3,8), (4,7), (5,6), (6,5), (7,4), (8,3), (9,2)$
Vậy số thỏa mãn là $29,38,47,56,65,74,83,92$

Gọi số cần tìm là \(\overline{9a}\left(0\le a\le9\right)\) số tự nhiên trong đề bài là \(x\). Theo đề bài, ta có:
\(\overline{9a}-\overline{a9}=x^3\)
\(\left(90+a\right)-\left(a.10-9\right)=x^3\)
\(90+a-a.10+9=x^3\)
\(\left(90+9\right)+\left(a-a.10\right)=x^3\)
\(99-9a=x^3\)
\(9.\left(11-a\right)=x^3\)
\(27.\left(11-a\right)=3.x^3\)
\(3^3.\left(11-a\right)=3.x^3\)
\(\left(11-a\right)=3.x^3\div3^3\)
\(\left(11-a\right)=3.\left(x\div3\right)^3\)
\(\left(11-a\right)\div3=\left(x\div3\right)^3\)
\(\Rightarrow\left(11-a\right)\in B\left(3\right)\)và \(0\le a\le9\)nên \(2\le\left(11-a\right)\le11\)Nên \(\left(11-a\right)\in\left\{3;6;9\right\}\)Ta lập bảng:
\(11-a\) | 3 | 6 | 9 |
\(\left(x\div3\right)^3\) | 1 | 2 | 3 |
\(\left(x\div3\right)\) | 1 | Không thỏa mãn | Không thỏa mãn |
\(\Rightarrow x\div3=1\Rightarrow x=3\)và \(11-a=3\Rightarrow a=8\)
Vậy số cần tìm là 98.
p+10 ; p+14 đều là số nguyên tố
tìm p
521