\(\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

(<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(=x^2+2xy+y^2-x^2+2xy-y^2\)
\(=\left(x^2-x^2\right)+\left(2xy+2xy\right)+\left(y^2-y^2\right)\)
\(=4xy\)

\(\left(x+y\right)+\left(x-y\right)\)
\(=x+y+x-y\)
\(=\left(x+x\right)+\left(y-y\right)\)
\(=2x\)

a) \(\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)

= \(x^2+2xy+y^2-x^2+2xy-y^2\)

= \(\left(x^2-x^2\right)+\left(2xy+2xy\right)+\left(y^2-y^2\right)\)

= 0 + 4xy + 0 => 4xy

b) (x + y) + (x - y)

= x + y + x - y

= (x + x) + (y - y)

= 2x + 0 => 2x

5 tháng 8 2020

a)

\(A=\left(x+3\right)\left(x^2-3x+9\right)-\left(54+x^3\right)\)

\(=x^3-3x^2+9x+3x^2-9x+27-54-x^3\)

\(=-27\)

or

\(A=x^3+27-54-x^3=-27\)

b)

\(B=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=8x^3+y^3-8x^3+y^3=2y^3\)

c)

\(C=\left(2x+1\right)^2+\left(1-3x\right)^2+2\left(2x+1\right)\left(3x-1\right)\)

\(=\left(2x+1+3x-1\right)^2=\left(5x\right)^2=25x^2\)

d)

\(D=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=x^3-8-\left(x-1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=6x^2-3x-10\)

\(A=x^3-y^3-21xy\)

\(A=\left(x-y\right).\left(x^2+xy+y^2\right)-21xy\)

\(A=7.\left(x^2+xy+y^2\right)-21xy\)

\(A=7.\left(x^2+xy+y^2+3xy\right)\)

\(A=7.\left(x^2+2xy+y^2+2xy\right)\)

\(A=7.\text{[}\left(x+y\right)^2+2xy\text{]}\)

\(A=7.\left(7^2+2xy\right)\)

\(A=7^3+14xy\)

Ngáo rồi @@

\(\)

26 tháng 5 2019

\(A=x^3-y^3-21xy\)

\(\Rightarrow A=\left(x-y\right)\left(x^2+xy+y^2\right)-21xy\)

\(\Rightarrow A=7\left(x^2+xy+y^2\right)-21xy\)

\(\Rightarrow A=7\left(x^2+xy+y^2-3xy\right)\)

\(\Rightarrow A=7\left(x^2+y^2-2xy\right)\)

\(\Rightarrow A=7\left(x-y\right)^2\)

\(\Rightarrow A=7.7^2\)

\(\Rightarrow A=7.49\)

\(\Rightarrow A=343\)

28 tháng 3 2018

tách sai rồi bạn ơi

phải là

\(=\dfrac{1}{2}x^2y.\left(-4\right)x^2y^4+3x^2y^4.x^2y^2\)

=\(2x^4y^5+3x^4y^5\)

=\(5x^4y^5\)

28 tháng 3 2018

\(A=\dfrac{1}{2}x^2y.\left(-2xy^2\right)^2+2x^2y^3.\left(x^2y^2\right)\)

\(=\dfrac{1}{2}x^2y.\left(-2\right)x^2y^4+2x^4y^5\)

\(=\left(-1\right)x^4.y^5+2x^4y^5\)

\(=x^4y^5\)

Lại có : \(\left(x-2\right)^{18}+\left|y+1\right|=0\)

\(\left\{{}\begin{matrix}\left(x-2\right)^{18}\ge0\\\left|y+1\right|\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^{18}=0\\\left|y+1\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

\(A=x^4y^5\)

\(\Leftrightarrow A=2^4.\left(-1\right)^5\)

\(\Leftrightarrow A=-16\)

22 tháng 7 2020

a) Thay x = \(\sqrt{2}\)vào biểu thức ta có : 

\(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2-2\right]=\left(\sqrt{2}+1\right).\left(2-2\right)=0\)

Giá trị của A khi x = \(\sqrt{2}\)là 0

b) Ta có \(B=\frac{2x^23x-2}{x+2}=\frac{6x^3-2}{x+2}\)

Thay x = 3 vào B ta có : \(B=\frac{6.3^3-2}{3+2}=\frac{160}{5}=32\)

Giá trị của B khi x = 3 là 32

d) Đặt \(\frac{x}{3}=\frac{y}{5}=k\Rightarrow x=3k;y=5k\)

Khi đó D = \(\frac{5\left(3k\right)^2+3.\left(5k\right)^2}{10\left(3k\right)^2-3\left(5k\right)^2}=\frac{45k^2+75k^2}{90k^2-75k^2}=\frac{120k^2}{15k^2}=8\)

=> D = 8

e) E = \(\left(1+\frac{z}{x}\right)\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x+z}{x}.\frac{x+y}{y}.\frac{y+z}{z}=\frac{\left(x+y\right)\left(x+z\right)\left(y+z\right)}{xyz}\)

Lại có x + y + z = 0

=> x + y = -z

=> x + z = - y 

=> y + z = - x

Khi đó E = \(\frac{-xyz}{xyz}=-1\)

\(\left(a^5b^2xy^2z^{n-1}\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=-\frac{125}{27}.a^8b^2x^{16}y^7z^{n+2}\)

Hệ số \(\frac{-125}{27}\)

Biến : a8b2x16y7zn + 2

22 tháng 7 2020

câu c bạn ghi đề rõ hơn thì mình sẽ giải luôn

25 tháng 7 2017

143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)

\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)

\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)

\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)

b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)

\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)

\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)

Rút gọn các đa thức đồng dạng, ta có kết quả:

\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)

Kết quả đã được xếp theo lũy thừa giảm dần của x

12 tháng 6 2017

1.a, VT= \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\)\(\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2=VP.\left(đpcm\right)\)

b, VP=\(x\left(x-3y\right)^2+y\left(y-3x\right)^2\)\(=x\left(x^2-6xy+9y^2\right)+y\left(y^2-6xy+9x^2\right)\)\(=x^3-6x^2y+9xy^2+y^3-6xy^2+9x^2y\)

\(=x^3+3x^2y+3xy^2+y^3\)\(=\left(x+y\right)^3=VT\left(đpcm\right)\)

2. VT=\(\left(a+b\right)^3-\left(a-b\right)^3\)\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)

\(2b\left(b^2+3a^2\right)\)\(=VP\left(đpcm\right)\).

12 tháng 6 2017

a) (x2 + y2)2 - (2xy)2

= [(x2 + y2) - 2xy].[(x2 + y2) + 2xy]

= [x2 + y2 - 2xy].[(x2 + y2 + 2xy]

= (x - y)2 . (x + y)2

12 tháng 6 2018

\(a,\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)=9x^2+30x+25+9x^2-30x+25-9x^2+4=9x^2+54\)
\(b,BT=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2+25x\)
\(c,BT=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-z-x-y\right)^2=z^2\)

27 tháng 11 2020

Bài 1 : 

\(A=x^2-2xy^2+y^4=\left(x-y^2\right)^2=-\left(y^2-x\right)^2\)

Mà \(B=-\left(y^2-x\right)^2\)

Nên ta có : đpcm 

27 tháng 11 2020

Bài 2 

Đặt \(\left(x+1\right)\left(x-2\right)\left(2x-1\right)=0\)

TH1 : x = -1

TH2 : x = 2

TH3 : x = 1/2 

Bài 4 : 

a, \(\left(2x+3\right)\left(5-x\right)=0\Leftrightarrow x=-\frac{3}{2};5\)

b, \(\left(x-\frac{1}{2}\right)\left(3x+1\right)\left(2-x\right)=0\Leftrightarrow x=\frac{1}{2};-\frac{1}{3};2\)

c, \(x^2+2x=0\Leftrightarrow x\left(x+2\right)=0\Leftrightarrow x=0;-2\)

d, \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow x=0;1\)

a: \(=-\dfrac{1}{15}x^6y\)

b: \(=\dfrac{4}{5}ab^5\cdot2x^3y\cdot\left(-y\right)=-\dfrac{8}{5}ab^5\cdot x^3y^2\)

c: \(=-16\cdot\dfrac{3}{4}v^3\cdot\dfrac{-2}{5}uv=\dfrac{24}{5}v^4u\)

d: \(=8\cdot\left(-64\right)\cdot5\cdot u^2v^2\cdot\left(-27\right)v^3=69120u^2v^5\)

e: \(=-10y\cdot8y^3z^3\cdot25z^2=-2000y^4z^5\)

Bài 3: 

a: \(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\)

b: \(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2=-x^2+10xy-12y^2\)

Bài 2: 

\(A+B=4x^4-5xy+5y^2+3x^2+2xy-y=4x^4+3x^2-3xy+5y^2-y\)

\(A-B=4x^4-5xy+5y^2-3x^2-2xy+y=4x^4-3x^2+5y^2-7xy+y\)

\(B-A=-\left(A-B\right)=-4x^4+3x^2-5y^2+7xy-y\)