Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có
ΔAHB nội tiếp
AB là đường kính
Do đó: ΔAHB vuông tại H
=>AH\(\perp\)BC tại H
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\CA^2=CH\cdot CB\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\\CH=\dfrac{8^2}{10}=6,4\left(cm\right)\end{matrix}\right.\)
b: ΔOAH cân tại O
mà OK là đường cao
nên OK là phân giác của \(\widehat{AOH}\)
Xét ΔOAD và ΔOHD có
OA=OH
\(\widehat{AOD}=\widehat{HOD}\)
OD chung
Do đó: ΔOAD=ΔOHD
=>\(\widehat{OAD}=\widehat{OHD}=90^0\)
=>HD\(\perp\)HO

a: Xét (O) co
NA,NC là tiếp tuyến
=>NA=NC
mà OA=OC
nên ON là trung trực của AC
=>ON vuông góc AC tại K
b: góc AIO=góc AHO=góc AKO=90 độ
=>A,I,O,H,K cùng thuộc đường tròn đường kính AO

A B C H K O D E F P Q
a) +) Gọi P và Q lần lượt là hình chiếu của O trên các đường thẳng AB và AC.
Tứ giác AHKO là hình chữ nhật => OA // HK hay OA // BC => ^FAO = ^ABC; ^EAO = ^ACB
Mà ^ABC = ^ACB = 450 => ^FAO = ^EAO = 450. Do đó: AO là tia phân giác ^EAF
Xét góc EAF: AO là phân giác ^EAF; OP vuông góc AF; OQ vuông góc AE
=> AP = AQ và OP = OQ (T/c điểm nằm trên đường phân giác)
Xét \(\Delta\)OQE và \(\Delta\)OPF có: ^OQE = ^OPF (=900); OQ = OP; OE = OF
=> \(\Delta\)OQE = \(\Delta\)OPF (Cạnh huyền, cạnh góc vuông) => QE = PF (2 cạnh tương ứng)
Ta có: AQ = AP; QE = PF (cmt) => AQ + QE = AP + PF => AE =AF
Xét \(\Delta\)AEF: ^EAF = 900; AE = AF (cmt) => \(\Delta\)AEF vuông cân tại A (đpcm)
+) Ta thấy \(\Delta\)AEF vuông cân ở A (cmt) => ^AFE = 450 hay ^DFE = 450
Xét (O) có: ^DFE là góc nội tiếp đường tròn (O)
=> \(\widehat{DFE}=\frac{1}{2}.sđ\widebat{DE}\)=> ^DOE = 2.^DFE = 900 => DO vuông góc OE (đpcm).
b) Xét tứ giác DAOE có: ^DAE = ^DOE (=900) => Tứ giác DAOE nội tiếp đường tròn (DE)
hay 4 điểm D;A;O;E cùng nằm trên 1 đường tròn (đpcm).
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xét (O) có
ΔAHB nội tiếp
AB là đường kính
Do đó: ΔAHB vuông tại H
=>AH\(\perp\)BC tại H
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH=\dfrac{6\cdot8}{10}=4,8\left(cm\right)\)
b: ΔOAH cân tại O
mà OK là đường cao
nên OK là phân giác của góc AOH
Xét ΔOAD và ΔOHD có
OA=OH
\(\widehat{AOD}=\widehat{HOD}\)
OD chung
Do đó: ΔOAD=ΔOHD
=>\(\widehat{OAD}=\widehat{OHD}\)
=>\(\widehat{OHD}=90^0\)
=>DH\(\perp\)HO tại H
a: Xét (O) có
ΔAHB nội tiếp
AB là đường kính
Do đó: ΔAHB vuông tại H
=>AH\(\bot\)BC tại H
ΔABC vuông tại A
=>\(A B^{2} + A C^{2} = B C^{2}\)
=>\(B C^{2} = 6^{2} + 8^{2} = 100\)
=>\(B C = \sqrt{100} = 10 \left(\right. c m \left.\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left{\right. A H \cdot B C = A B \cdot A C \\ C A^{2} = C H \cdot C B\)
=>\(\left{\right. A H = \frac{6 \cdot 8}{10} = 4 , 8 \left(\right. c m \left.\right) \\ C H = \frac{8^{2}}{10} = 6 , 4 \left(\right. c m \left.\right)\)
b: ΔOAH cân tại O
mà OK là đường cao
nên OK là phân giác của \(\hat{A O H}\)
Xét ΔOAD và ΔOHD có
OA=OH
\(\hat{A O D} = \hat{H O D}\)
OD chung
Do đó: ΔOAD=ΔOHD
=>\(\hat{O A D} = \hat{O H D} = 9 0^{0}\)
=>HD\(\bot\)HO