K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE và ΔACF có

AB=AC

\(\widehat{ABE}=\widehat{ACF}\)(ΔABC cân tại A)

BE=CF

Do đó: ΔABE=ΔACF

=>AE=AF

=>ΔAEF cân tại A

b:

ΔABE=ΔACF

=>\(\widehat{BAE}=\widehat{CAF}\)

Xét ΔANE vuông tại N và ΔAMF vuông tại M có

AE=AF

\(\widehat{NAE}=\widehat{MAF}\)

Do đó: ΔANE=ΔAMF

=>EN=FM

c:

ΔANE=ΔAMF

=>AN=AM

TA có: AN+NB=AB

AM+MC=AC

mà AN=AM và AB=AC

nên NB=MC

Xét ΔNBE vuông tại N và ΔMCF vuông tại M có

NB=MC

NE=MF

Do đó: ΔNBE=ΔMCF

=>BE=FC

Ta có: OE+EB=OB

OF+FC=OC

mà EB=FC và OB=OC

nên OE=OF

=>O nằm trên đường trung trực của EF(1)

Xét ΔANI vuông tại N và ΔAMI vuông tại M có

AI chung

AN=AM

Do đó: ΔANI=ΔAMI

=>IN=IM

Ta có: IE+EN=IN

IF+FM=IM

mà NE=MF và IN=IM

nên IE=IF
=>I nằm trên đường trung trực của EF(2)

AE=AF nên A nằm trên đường trung trực của EF(3)

Từ (1),(2),(3) suy ra A,O,I thẳng hàng

 

5 tháng 4 2017

Mình không biết! Khó thật! Mà mình cũng chưa tới lớp 7 nên cũng không thể giải cho bạn được! thông cảm nha!

Nhớ tk mình

21 tháng 4 2018

Khó quá mình không biết giải

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.a) Tính ACb) Kẻ BD là...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tai A. Kẻ phân giác BD của \(\widehat{ABC}\)( D thuộc AC), trên cạnh BC lấy E sao cho BA = BE.

a) Chứng minh tam giác ABD = tam giác EBD và DE vuông góc với BC.

b) Giả sử AD= 6cm, DC = 10cm. Tính độ dài đoạn EC.

c) Biết tia ED cắt tia BA tại F và gọi M là trung điểm của đoạn FC. Chứng minh ba điểm B,D,M thẳng hàng.

Câu 2: Cho tam giác ABC vuông tại A, có Ab = 6cm ; BC = 10cm.

a) Tính AC

b) Kẻ BD là phân giác của \(\widehat{ABC}\) (D thuộc AC), kẻ DE vuông góc với BC ( E thuộc BC). Chứng minh DA = DE.

c) Chứng minh BD đi qua trung điểm của AE.

Câu 3: Cho góc xOy ( \(\widehat{xOy}\)không bằng 180) và tia Om là phân giác cuẩ góc xOy. Lấy điểm A thuộc Ox ; B thuộc Oy sao cho OA = OB. Gọi I là giao điểm của Om và AB.

a) Chứng minh tam giác AOI = tam giác BOI

b) Từ I kẻ IE thuộc Ox ( E thuộc Ox ) ; IF vuông góc với Oy ( F thuộc Oy ). Chứng minh tam giác EIF cân.

c) Lấy M trên Ox ( A nằm giữa O và M ) vẽ MN // Ab ( N thuộc Oy ), gọi H là trung điểm của MN =. Chứng minh 3 điểm O, I, H thẳng hàng.

  LÀm ơn giúp với mai mình thi rồi. Vẽ cả hình nhé. Cảm ơn ~

1
27 tháng 2 2019

cau 1 :

A B C E

Xet tam giac ABD va tam giac EBD co : BD chung

goc ABD = goc DBE do BD la phan giac cua goc ABC (gt)

AB = BE (Gt)

=> tam giac ABD = tam giac EBD (c - g - c)

=> goc BAC = goc DEB (dn) 

ma goc BAC = 90 do tam giac ABC vuong tai A (gt)

=> goc DEB = 90 

=> DE _|_ BC (dn)

b, tam giac ABD = tam giac EBD (cau a)

=> AB = DE (dn)

AB = 6 (cm) => DE = 6 cm

DE _|_ BC => tam giac DEC vuong tai E 

=> DC2 = DE2 + CE2 ; DC = 10 cm (gt); DE = 6 cm (cmt)

=> CE2 = 10- 62

=> CE2 = 64

=> CE = 8 do CE > 0

3 tháng 8 2021

bạn tự vẽ hình nhé

Nối AM. Ta có ˆHEF=180o−ˆAEF=180o−2ˆEMH=2(90o−ˆEMH)=2ˆHEMHEF^=180o−AEF^=180o−2EMH^=2(90o−EMH^)=2HEM^(Tam giác EMH vuông tại H)

Suy ra:ˆHEF=2ˆHEMHEF^=2HEM^=> EM là tia phân giác của góc ˆHEFHEF^ hay là tia phân giác góc ngoài của tam giác ΔAEFΔAEF tại E

Ta có: ΔABCΔABC cân tại A có M là trung điểm của BC(gt) => AM đồng thời là đường phân giác góc ˆBACBAC^

Xét ΔAEFΔAEFcó AM là đường phân giác của góc ˆBACBAC^và EM là đường phân giác góc ngoài của ΔAEFΔAEFtại E, 2 tia phân giác này cắt nhau tại M => M là giao điểm của 3 đường phân giác trong ΔAEFΔAEF(1 tia phân giác trong và 2 tia phân giác ngoài)

=> FM cũng là tia phân giác góc ngoài của ΔAEFΔAEFtại  hay là tia phân giác của góc EFC

Vậy: FM là tia phân giác của góc EFC (đpcm)

19 tháng 4 2022

Nối AM. Ta có (Tam giác EMH vuông tại H)

Suy ra:ˆHEF=2ˆHEMHEF^=2HEM^=> EM là tia phân giác của góc ˆHEFHEF^ hay là tia phân giác góc ngoài của tam giác ΔAEFΔAEF tại E

Ta có: ΔABCΔABC cân tại A có M là trung điểm của BC(gt) => AM đồng thời là đường phân giác góc ˆBACBAC^

Xét ΔAEFΔAEFcó AM là đường phân giác của góc ˆBACBAC^và EM là đường phân giác góc ngoài của ΔAEFΔAEFtại E, 2 tia phân giác này cắt nhau tại M => M là giao điểm của 3 đường phân giác trong ΔAEFΔAEF(1 tia phân giác trong và 2 tia phân giác ngoài)

=> FM cũng là tia phân giác góc ngoài của ΔAEFΔAEFtại  hay là tia phân giác của góc EFC

Vậy: FM là tia phân giác của góc EFC (đpcm)

23 tháng 5 2018

a )

ta có : \(\widehat{C_1}=\widehat{C_2}\) ( 2 góc đối đỉnh ) 

mà \(\widehat{C_1}=\widehat{B}\) ( tam gíac ABC cân tại A ) 

Do do : \(\widehat{C_2}=\widehat{B}\)

xét \(\Delta ABDva\Delta ICE,co:\)

AB = AC = IC ( gt ) 

BD=CE ( gt )

\(\widehat{C_2}=\widehat{B}\) (cmt ) 

Do do : \(\Delta ABD=\Delta ICE\left(c-g-c\right)\)

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau