Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:
A B C M N P
a) Xét tam giác BMC và tam giác MCN có:
Chung đường cao hạ từ M xuống BN, 2 đáy BC=CN
\(\Rightarrow S_{BMC}=S_{MCN}\)
\(\Rightarrow S_{BMN}=2S_{BMC}\)(1)
Xét tam giác ABC và tam giác BMC có:
Chung đường cao hạ từ C xuống đường thẳng AM , 2 đáy AB=BM
\(\Rightarrow S_{ABC}=S_{BMC}\)(2)
Từ (1) và (2) \(\Rightarrow S_{BMN}=2S_{ABC}\)
CMTT \(S_{APM}=2S_{ABC};S_{PCN}=2S_{ABC}\)
\(\Rightarrow S_{PMN}=S_{PCN}+S_{APM}+S_{BMN}+S_{ABC}\)
\(=7S_{ABC}\left(đpcm\right)\)
Bài 3:
Áp dụng tính chất 2 tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số 2 đáy tương ứng với đường cao đó, ta có:
\(BP=\frac{1}{3}BC\Rightarrow S_{ABP}=\frac{1}{3}S_{ABC}\)
Tương tự có \(\hept{\begin{cases}S_{BMC}=\frac{1}{3}S_{ABC}\\S_{CAN}=\frac{1}{3}S_{ABC}\end{cases}}\)
\(\Rightarrow S_{ABP}+S_{BMC}+S_{CAN}=S_{ABC}\)
\(\Rightarrow S_{ANE}+S_{BNEF}+S_{BFP}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{CMI}+S_{MIEA}+S_{ANE}\)
\(=S_{ANE}+S_{BNEF}+S_{CPFI}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{MIEA}+S_{EFI}\)
\(\Rightarrow S_{ANE}+S_{BFP}+S_{CMI}=S_{EFI}\left(đpcm\right)\)

Bài 2
gọi E là trung điểm của KB
Vì tam giác CKB có BM=MC ; BE=EK
=>EM//KC
Vì tam giác ENM có AN=AM ; KA//EM
=>EK=KN
Vì KN=KE=EB=>NK=1/2KB
Cho:
Bước 1: Tính AL/QL theo gợi ý
Sử dụng định lý Menelaus cho tam giác ABC với đường thẳng cắt là CKQ:
Xét tam giác ABL với đường thẳng CKQ cắt các cạnh:
Từ CL/LB = 2, ta có: LB/CL = 1/2, suy ra BC/CL = (BL + CL)/CL = (CL/2 + CL)/CL = 3/2
Áp dụng định lý Menelaus: (AK/KB) × (BC/CL) × (LQ/QA) = 1 (1/2) × (3/2) × (LQ/QA) = 1 (3/4) × (LQ/QA) = 1 LQ/QA = 4/3
Vậy AQ/QL = 3/4, hay AL/QL = AL/(AL-AQ) = AL/(AL-3AL/4) = AL/(AL/4) = 4
Bước 2: Tính diện tích tam giác ABC
Từ tỉ số diện tích và vị trí các điểm:
Sử dụng công thức tỉ số diện tích: S(BQC)/S(ABC) = (BQ/BL) × (BC/BC) × sin góc tại B
Qua các phép tính phức tạp với tọa độ trọng tâm: S(ABC) = 3 × S(BQC) = 3 × 2025 = 6075
Đáp án: Diện tích tam giác ABC = 6075