K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

22 tháng 2 2019
a,\(\Delta AFE\infty\Delta BFD\left(g.g\right)\)
b, \(\Delta CBE\infty\Delta CAD\left(g.g\right)\Rightarrow\frac{CB}{CA}=\frac{CE}{CD}\Rightarrow\frac{CB}{CE}=\frac{CA}{CD}\)
c, Tam giác CEB có CM là tia p/g của \(\widehat{ECB}\left(M\in EB\right)\left(gt\right)\Rightarrow\frac{CB}{CE}=\frac{MB}{ME}\)
\(\Delta CDA\) có CN là tia phân giác của \(\widehat{ACD}\left(gt\right)\Rightarrow\frac{CA}{CD}=\frac{AN}{ND}\)
Mà \(\frac{CB}{CE}=\frac{CA}{CD}\left(cmt\right)\Rightarrow\frac{MB}{ME}=\frac{AN}{ND}\Rightarrow AN.ME=MB.ND\)
a: Xét ΔCAD vuông tại D và ΔCBE vuông tại E có
\(\widehat{ACD}\) chung
Do đó: ΔCAD~ΔCBE
=>\(\dfrac{CA}{CB}=\dfrac{CD}{CE}\)
=>\(CA\cdot CE=CB\cdot CD\)
b: Xét ΔAEH vuông tại E và ΔADC vuông tại D có
\(\widehat{EAH}\) chung
Do đó: ΔAEH~ΔADC
=>\(\dfrac{AE}{AD}=\dfrac{AH}{AC}\)
=>\(AE\cdot AC=AH\cdot AD\)
c: Xét ΔABC có
BE,AD là các đường cao
BE cắt AD tại H
Do đó: H là trực tâm của ΔABC
=>CH\(\perp\)AB tại F
Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^0+90^0=180^0\)
nên AEHF là tứ giác nội tiếp
Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)
nên CEHD là tứ giác nội tiếp
Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF nội tiếp)
\(\widehat{DEH}=\widehat{DCH}\)(CEHD nội tiếp)
mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{FEH}=\widehat{DEH}\)
=>EH là phân giác của góc FED
hướng dẫn cách giải chi tiết:
Hướng giải:
Chi tiết chứng minh: