K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

nghiệm của đa thức này là 0

nhớ tích đúng cho tớ nhé



liệu bạn giải ra có đc ko

14 tháng 8 2017

1. Thay x = -2 vào \(f\left(x\right)\), ta có:

\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0

=> -8 + 8 - 2a + 1 = 0

=> -2a +1 = 0

=> -2a = -1

=> a = \(\frac{1}{2}\)

Vậy a = \(\frac{1}{2}\)

2. * Thay x = 1 vào \(f\left(x\right)\), ta có:

1+ 1.a + b = 1 + a + b = 0    ( 1)

* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:

22 + 2.a + b =  4 + 2a + b =  0  ( 2)

* Lấy    (2 )   -   ( 1)  , ta có:

 ( 4 + 2a + b ) - ( 1 + a + b ) = 3  + a 

=> 3 + a = 0

=> a = -3

* 1 + a + b = 0 

=> 1 - 3 + b = 0

=> b = -1 + 3 = -2

Vậy a= -3  và b= -2

8 tháng 4 2019

a = -3

b = -2

Hok tốt

25 tháng 4 2017

a) 2

b)-2

23 tháng 3 2019

\(2x^3+x^2+x-1=0\)

\(\Rightarrow2x^3-x^2+2x^2-x+2x-1=0\)

\(\Rightarrow x^2\left(2x-1\right)+x\left(2x-1\right)+2x-1=0\)

\(\Rightarrow\left(2x-1\right)\left(x^2+x+1\right)=0\)

Mà \(x^2+x+1=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Do đó: \(2x-1=0\Rightarrow x=\frac{1}{2}\) (loại vì \(x\notin Z\))

Vậy đa thức C không có nghiệm nguyên

(phần tách C thành tích các đa thức chính là \(\left(2x-1\right)\left(x^2+x+1\right)\) )

23 tháng 4 2019

a)

\(x^2-5x+4=x^2+x-4x+4=x\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-4\right)\)

Để đa thức có nghiệm thì \(\left(x+1\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}\)

b)

\(x+2x^2=x\left(1+2x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\1+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)

c)

\(x\left(x-1\right)-x\left(x+3\right)+4\)

\(=x\left(x-1-x-3\right)+4\)

\(=-4x+4\)

Đa thức có nghiệm khi:\(-4\left(x+1\right)=0\)

\(\Leftrightarrow x=-1\)

19 tháng 4 2017

a) Ta có: P(x) = 0 khi 3 – 2x = 0

=>-2x = -3 => x = \(\dfrac{3}{2}\)

b) Q(x) =x2 +2 là đa thức không có nghiệm vì

x2 ≥ 0

2 > 0 (theo quy tắc nhân hai số hữu tỉ cùng dấu)

=>x2 + 2 > 0 với mọi x

Nên Q(x) không có nghiệm trong R


19 tháng 4 2017

a) Ta có P(x) = 0 khi 3 – 2x = 0

Giải bài 13 trang 90 SGK Toán 7 Tập 2 | Giải toán lớp 7

b) Đa thức Q(x) không có nghiệm, bởi vì:

x2 ≥ 0 với mọi x thuộc R.

2 > 0

\(\Rightarrow\) Q(x) = x2 + 2 > 0 với mọi x thuộc R.

Do đó, không có giá trị x nào thuộc R để Q(x) = 0 hay đa thức Q(x) không có nghiệm.

23 tháng 5 2018

a ) 

\(x^2-x+1=0\)

( a = 1 ; b= -1 ; c = 1 )

\(\Delta=b^2-4.ac\)

\(=\left(-1\right)^2-4.1.1\)

\(=1-4\)

\(=-3< 0\)

vì \(\Delta< 0\) nên phương trình vô nghiệm 

=> đa thức ko có nghiệm 

b ) đặc t = x (  \(t\ge0\) )

ta có : \(t^2+2t+1=0\)

( a = 1 ; b= 2 ; b' = 1 ; c =1 ) 

\(\Delta'=b'^2-ac\)

\(=1^2-1.1\)

\(=1-1=0\)

phương trình có nghiệp kép 

\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )   

vì \(t_1=t_2=-1< 0\)

nên phương trình vô nghiệm 

Vay : đa thức ko có nghiệm 

24 tháng 5 2018

2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)

=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)

=> \(f\left(x\right)=5x^2-1\)

Khi \(f\left(x\right)=0\)

=> \(5x^2-1=0\)

=> \(5x^2=1\)

=> \(x^2=\frac{1}{5}\)

=> \(x=\sqrt{\frac{1}{5}}\)

Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)