Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

mình không biết nữa bằng bao nhiêu ấy nhỉ .......? .......? Sory ^.^
1/3 + 13/15 + 33/35 + 61/63 + 97/99
= 45/11 ( mình không tiện giải, để khi khác giải sau)
Chúc bạn may mắn!

B=2/1.3 + 2/3.5 + 2/5.7 +...+ 2/299.301
B=1-1/3+1/3-1/5+1/5-1/7+...+1/299-1/301=1-1/301=300/301
\(Ta có: \frac{2}{3}=\frac{1}{1}-\frac{1}{3}\);
\(\frac{2}{15}=\frac{1}{3}-\frac{1}{5}\);
\(\frac{2}{35}=\frac{1}{5}-\frac{1}{7}\) ; ... ; \(\frac{2}{89999}=\frac{1}{299}-\frac{1}{301}\).
=> B= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{299}-\frac{1}{301}\)
=> B=\(\frac{1}{1}-\frac{1}{301}\)
=> B=\(\frac{300}{301}\)

\(\Rightarrow A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{99.101}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{99.101}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(\Rightarrow A=\frac{1}{2}.\frac{88}{303}\)
\(\Rightarrow A=\frac{44}{303}\)
\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)
\(\Rightarrow2A=\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+...+\frac{2}{99\times101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)
=> A = 98/203 : 2 = 49/303

Các bạn nêu rõ cách làm từng bài giúp mình nhé! Thanks ^-^!

=1/3x5+1/5x7+1/7x9+...+1/999x1001
=(1/3-1/5+1/5-1/7+...+1/999-1/1001)/2
=(1/3-1/1001)/2
=499/3003
Đặt A= 1/15+1/35+1/63+....+1/999999
A=1/3*5+1/5*7+1/7*9+.....+1/999*1001
A=1/2*(2/3*5+2/5*7+2/7*9+....+2/999*1001)
A=1/2*(5-3/3*5+7-5/5*7+9-7/7*9+....+1001-999/999*1001)(tự làm tiếp nhé)
A=1/2*(1/3-1/1001)
A=1/2*998/3003
A=499/3003 (nếu còn rút gọn được thì rút gọn nốt nhá)

a)\(\frac{13}{15}+\frac{13}{35}+\frac{13}{63}+\frac{13}{99}\)
\(=\frac{13}{3.5}+\frac{13}{5.7}+\frac{13}{7.9}+\frac{13}{9.11}\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\left(\frac{1}{3}-\frac{1}{11}\right)\)
\(=\frac{13}{2}\cdot\frac{8}{33}\)
\(=\frac{52}{33}\)
a) Đặt A= 13/15 + 13/35 + 13/63 + 13/99
A = 13/2 ( 2/15 + 2/35 + 2/63 + 2/99)
A= 13/2 ( 2/ 3.5 + 2/5.7 + 2/7.9 + 2/9.11)
A= 13/2 ( 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11)
A= 13/2 ( 1/3 - 1/11)
A= 13/2 . 8/33
A= 52/33

A = 1/15 + 1/35 + 1/ 63 + 1/99 + ...+ 1/9999
A = 1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11) + ... + 1/(99 x 101)
Ax2 = 2/(3x5) + 2/(5x7) + 2/(7x9) + 2/(9x11) + ... + 2/(99 x 101)
Ax2 = 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + 1/9 – 1/11 + ...+ 1/99 – 1/101
Ax2 = 1/3 – 1/101 = 98/303
A = 98/303 : 2
A = 49/303
tớ không chắc nhé

Chuyển vế tất cả số hạng tự do sang phải, ta được \(x=1931\)bạn nhé!
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\cdots+\frac{1}{a\left(a+2\right)}=\frac{8}{87}\)
\(2\left(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\cdots+\frac{1}{a\left(a+2\right)}\right)=\frac{8}{57}\cdot2\)
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\cdots+\frac{2}{a\left(a+2\right)}=\frac{16}{57}\)
\(\frac13-\frac15+\frac15-\frac17+\frac17-\frac19+\cdots\frac{1}{a}-\frac{1}{a+2}=\frac{16}{87}\)
\(\frac13-\frac{1}{a+2}=\frac{16}{57}\)
\(\frac{1}{a+2}=\frac13-\frac{16}{57}\)
\(\frac{1}{a+2}=\frac{1}{19}\)
a+2=19
a=17