Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Delta'=\left(m+2\right)^2-\left(m^2+4m+3\right)=m^2+4m+4-m^2-4m-3=1>0\)
\(\Rightarrow\) pt có 2 nghiệm phân biệt
Dùng hệ thức Viét
\(x_1+x_2=2\left(m+2\right)=2m+4\\ x_1x_2=m^2+4m+3\\ x_1^2+x_2^2-10=0\\ \Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-10=0\\ \Leftrightarrow\left(2m+4\right)^2-2\left(m^2+4m+3\right)-10=0\\ \Leftrightarrow4m^2+16m+16-2m^2-8m-6-10=0\\ \Leftrightarrow2m^2+8m=0\\ \Leftrightarrow m^2+4m=0\\ \Leftrightarrow m\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\end{matrix}\right.\)


\(x^2-2mx+m^2-m+4=0\)
a/ ( a = 1; b = -2m; c = m^2 - m + 4 )
\(\Delta=b^2-4ac\)
\(=\left(-2m\right)^2-4.1.\left(m^2-m+4\right)\)
\(=4m^2-4m^2+4m-16\)
\(=4m-16\)
Để pt luôn có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4m-16\ge0\Leftrightarrow m\ge4\)
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=2m\\P=x_1x_2=\frac{c}{a}=m^2-m+4\end{cases}}\)
Ta có: \(A=x_1^2+x_2^2-x_1x_2\)
\(=S^2-2P-P\)
\(=S^2-3P\)
\(=\left(2m\right)^2-3\left(m^2-m+4\right)\)
\(=4m^2-3m^2+3m-12\)
\(=m^2+3m-12\)
\(=m^2+3m+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-12\)
\(=\left(m+\frac{3}{2}\right)^2-\frac{57}{4}\ge-\frac{57}{4}\)
Vậy: \(MinA=-\frac{57}{4}\Leftrightarrow\left(m+\frac{3}{2}\right)^2=0\Leftrightarrow m=-\frac{3}{2}\)
a)) Δ=b2-4ac
Δ=(-2m)2-4(m2-m+4)
Δ=4m-16
để pt có ng khi Δ > 0 & Δ=0
=> m> hoặc = 4

a, \(x^2-2\left(m+1\right)x+m^2+m+1=0\)
Ta có : \(\left(-2m-2\right)^2-4\left(m^2+m+1\right)=4m^2+8m+4-4m^2-4m-4\)
\(=4m\)Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay \(4m>0\Leftrightarrow m>0\)
b, Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+m+1\end{cases}}\)
\(x_1^2+x_2^2=3x_1x_2-1\)
mà \(x_1+x_2=2m+2\Leftrightarrow\left(x_1+x_2\right)^2=\left(2m+2\right)^2\)
\(\Leftrightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)
\(=4m^2+8m+4-\left(m^2+m+1\right)=3m^2+7m+3\)
hay \(3m^2+7m+3=3\left(m^2+m+1\right)-1\)
\(\Leftrightarrow3m^2+7m+3=3m^2+3m+2\Leftrightarrow4m+1=0\Leftrightarrow m=-\frac{1}{4}\)

a/ Bạn tự giải
b/ \(\Delta'=\left(m+1\right)^2-\left(m^2+3m+2\right)=-m-1\)
Pt có 2 nghiệm pb khi \(\Delta'>0\Rightarrow m< -1\)
Pt có nghiệm kép khi \(\Delta'=0\Rightarrow m=-1\)
Pt vô nghiệm khi \(\Delta'< 0\Rightarrow m>-1\)
c/ Khi \(m< -1\) theo Viet pt có 2 nghiệm pb thỏa: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1x_2=m^2+3m+2\end{matrix}\right.\)
\(x_1^2+x_2^2=12\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=12\)
\(\Leftrightarrow\left(2m+2\right)^2-2\left(m^2+3m+2\right)-12=0\)
\(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2>-1\left(l\right)\\m=-3\end{matrix}\right.\)

1
\(x^2-4mx+4m^2-2=0\)
\(\Leftrightarrow\left(x-2m\right)^2-2=0\)
\(\Leftrightarrow\left(x-2m+\sqrt{2}\right)\left(x-2m-\sqrt{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2m-\sqrt{2}\\x=2m+\sqrt{2}\end{cases}}\)
Vậy............
Để giải bài toán này, chúng ta cần thực hiện các bước sau:
1. Tìm điều kiện để phương trình có hai nghiệm phân biệt:
2. Biến đổi điều kiện đề bài:
3. Áp dụng định lý Viète:
4. Thay vào điều kiện đề bài và giải phương trình:
Kết luận:
chỗ phân tích thành nhân tử không đúng Nguyễn Việt Hoàn