
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Chứng minh tính chất: Nếu mọi số nguyên k (2 \(\le\) k \(\le\)[ \(\sqrt{N}\)] ) đều không là ước của N thì N là số nguyên tố
C/M: Giả sử N không là số nguyên tố
= N = kx1 ky2 ...kmz trong đó 2 \(\le\) k1 < k2 < ...< kn
=> N > kn1 \(\ge\)k12
=> k1 \(\le\) \(\sqrt{N}\); k nguyên => k1 \(\le\) [\(\sqrt{N}\)]
mà k1 là ước của N => Mâu thuẫn với giả thiết
Vậy N kà số nguyên tố

\(-x-5\ge0\Leftrightarrow-x\ge5\)(chuyển -5 qua vế phải và đổi dấu)
\(\Leftrightarrow x\le-5\)(cùng nhân 2 vế của BĐT cho -1 và BĐT đổi chiều)
Vậy hai bất phương trình \(-x-5\ge0\) và \(x\le-5\)tương đương với nhau
Ta có:\(-x-5\ge0\)
\(\Leftrightarrow-x\ge5\)
\(\Leftrightarrow\left(-1\right)\left(-x\right)\le\left(-1\right)5\)(Nhân cả hai vế cho -1)
\(\Leftrightarrow x\le-5\)
Vậy hai Bất phương trình trên tương đương với nhau


\(\left(-1\right)+\left(\frac{1}{2}\right)^{98}=-1\)
Bạn bấm trên máy như vậy là vì bug máy, số \(\left(\frac{1}{2}\right)^{98}\)quá to, quá phức tạp hoặc đại loại vậy thì nó sẽ auto = 0
P/s : các số to, khủng khác cx như thế

a^2 = b^2 ; c^2 = d^2
=> a = b ; c = d
=> ab = a^2 = b^2 ; cd = c^2 = d^2
=> đpcm
Acc ff là %_NVH_gm%
acc ff toi la _bin_