\(\) \(\frac{3-2\sqrt3}{\sqrt3}+\frac{6}{3+\sqrt3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 4

\(\dfrac{3-2\sqrt{3}}{\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}=\dfrac{\sqrt{3}.\left(\sqrt{3}-2\right)}{\sqrt{3}}+\dfrac{6.\left(3-\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}\)

\(=\sqrt{3}-2+\dfrac{6.\left(3-\sqrt{3}\right)}{6}\)

\(=\sqrt{3}-2+3-\sqrt{3}\)

\(=1\)

Ta có: \(B=21\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}\right)^2-6\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}\right)^2-15\sqrt{15}\)

\(=21\cdot\left[2+\sqrt{3}+3-\sqrt{5}+2\sqrt{\left(2+\sqrt{3}\right)\left(3-\sqrt{5}\right)}\right]-6\cdot\left[2-\sqrt{3}+3+\sqrt{5}+2\cdot\sqrt{\left(2-\sqrt{3}\right)\left(3+\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{\left(4+2\sqrt{3}\right)\left(6-2\sqrt{5}\right)}\right)-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\sqrt{\left(4-2\sqrt{3}\right)\left(6+2\sqrt{5}\right)}\right]-15\sqrt{15}\)

\(=21\cdot\left[5+\sqrt{3}-\sqrt{5}+\left(\sqrt{3}+1\right)\left(\sqrt{5}-1\right)\right]-6\cdot\left[5-\sqrt{3}+\sqrt{5}+\left(\sqrt{3}-1\right)\left(\sqrt{5}+1\right)\right]-15\sqrt{15}\)

\(=21\cdot\left(5+\sqrt{3}-\sqrt{5}+\sqrt{15}-\sqrt{3}+\sqrt{5}-1\right)-6\cdot\left(5-\sqrt{3}+\sqrt{5}+\sqrt{15}+\sqrt{3}-\sqrt{5}-1\right)-15\sqrt{15}\)

\(=21\cdot\left(4+\sqrt{15}\right)-6\left(4+\sqrt{15}\right)-15\sqrt{15}\)

\(=84+21\sqrt{15}-24-6\sqrt{15}-15\sqrt{15}\)

\(=60\)

13 tháng 8 2020

Giúp e câu a nữa ạ

14 tháng 8 2019

\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(=1-\sqrt{3}-\sqrt{3}-2\)

\(=-2\sqrt{3}-1\)

\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+4-2\sqrt{3}\)

\(=6-3\sqrt{3}\)

14 tháng 8 2019

\(A=\sqrt{\left(1-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(A=\sqrt{3}-1-\sqrt{3}-2\)

\(A=-3\)

\(B=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(4-2\sqrt{3}\right)}\)

\(B=2-\sqrt{3}+\sqrt{3}-1\)

\(B=1\)

30 tháng 7 2018

\(A=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(\Rightarrow\)\(\sqrt{2}A=\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\)

                       \(=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\)

                       \(=\sqrt{3}+1+\sqrt{3}-1\)

                       \(=2\sqrt{3}\)

\(\Rightarrow\)\(A=\sqrt{6}\)   (đpcm)

\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)

\(VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\)

\(=\sqrt{\frac{2\left(2+\sqrt{3}\right)}{2}}+\sqrt{\frac{2\left(2-\sqrt{3}\right)}{2}}\)

\(=\sqrt{\frac{4+2\sqrt{3}}{2}}+\sqrt{\frac{4-2\sqrt{3}}{2}}\)

\(=\sqrt{\frac{3+2\sqrt{3}+1}{2}}+\sqrt{\frac{3-2\sqrt{3}+1}{2}}\)

\(=\sqrt{\frac{\left(\sqrt{3}+\sqrt{1}\right)^2}{2}}+\sqrt{\frac{\left(\sqrt{3}-\sqrt{1}\right)^2}{2}}\)

\(=\frac{\left|\sqrt{3}+\sqrt{1}\right|+|\sqrt{3}-\sqrt{1}|}{\sqrt{2}}\)

\(=\frac{\sqrt{3}+\sqrt{1}+\sqrt{3}-\sqrt{1}}{\sqrt{2}}\)

\(=\frac{2\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{12}}{\sqrt{2}}=\sqrt{6}\)

\(=VP\)

Vậy đẳng thức được chứng minh .

15 tháng 8 2018

\(\sqrt{5+2\sqrt{6}}+\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{3}\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{5}-\sqrt{3}=\sqrt{2}+\sqrt{5}\)

\(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}-\dfrac{5}{\sqrt{3}-2\sqrt{2}}-\dfrac{5}{\sqrt{3}+\sqrt{8}}=\sqrt{\sqrt{3}^2+2\sqrt{3}.1+1^2}+\sqrt{\sqrt{3}^2-2\sqrt{3}.1+1^2}-\dfrac{5\left(\sqrt{3}+2\sqrt{2}\right)}{\left(\sqrt{3}-2\sqrt{2}\right)\left(\sqrt{3}+2\sqrt{2}\right)}-\dfrac{5\left(\sqrt{3}-2\sqrt{2}\right)}{\left(\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}-2\sqrt{2}\right)}=\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}-\dfrac{5\sqrt{3}+10\sqrt{2}}{9-8}-\dfrac{5\sqrt{3}-10\sqrt{2}}{9-8}=\sqrt{3}+1+\sqrt{3}-1-5\sqrt{3}-10\sqrt{2}-5\sqrt{3}+10\sqrt{2}=-8\sqrt{3}\)\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}=\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{3}+\left(\sqrt{3}\right)^2}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\sqrt{5}+\sqrt{3}-\sqrt{5}+\sqrt{3}=2\sqrt{3}\)

31 tháng 8

ko hiểu

a: \(\sqrt{6-4\sqrt2}+\sqrt{22-12\sqrt2}\)

\(=\sqrt{4-2\cdot2\cdot\sqrt2+2}+\sqrt{18-2\cdot3\sqrt2\cdot2+4}\)

\(=\sqrt{\left(2-\sqrt2\right)^2}+\sqrt{\left(3\sqrt2-2\right)^2}\)

\(=2-\sqrt2+3\sqrt2-2=2\sqrt2\)

b: \(\sqrt{\left(\sqrt3-\sqrt2\right)^2}+\sqrt2=\sqrt3-\sqrt2+\sqrt2=\sqrt3\)

c: \(3\sqrt5-\sqrt{\left(1-\sqrt5\right)^2}\)

\(=3\sqrt5-\left|1-\sqrt5\right|\)

\(=3\sqrt5-\left(\sqrt5-1\right)=2\sqrt5+1\)

d:Sửa đề: \(\sqrt{17-12\sqrt2}+\sqrt{6+4\sqrt2}\)

\(=\sqrt{9-2\cdot3\cdot2\sqrt2+8}+\sqrt{4+2\cdot2\cdot\sqrt2+2}\)

\(=\sqrt{\left(3-2\sqrt2\right)^2}+\sqrt{\left(2+\sqrt2\right)^2}=3-2\sqrt2+2+\sqrt2=5-\sqrt2\)

25 tháng 6 2018

Hỏi đáp Toán

25 tháng 6 2018

Cảm ơn bạn nha

2 tháng 9 2018

\(\sqrt{\left(2-\sqrt{3}\right)\left(\sqrt{6+\sqrt{2}}\right)}=2\)

=2.

NV
22 tháng 6 2019

Chắc lớp 9 thì chỉ học góc nhọn do các hệ thức lượng đều áp dụng trong tam giác vuông

\(cot\left(2a+30^0\right)=tan\left(90-2a-30^0\right)=tan\left(60^0-2a\right)=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}=tan30^0\)

\(\Rightarrow60^0-2a=30^0\Rightarrow a=15^0\)

22 tháng 6 2019

chữ đầu viết sai kìa