
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Tự tl v!
Áp dụng tính chất DTS bằng nhau ,ta có:
\(\frac{a}{b}=\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)
\(\frac{a}{b}=\frac{-5a}{-5b}=\frac{3c}{3d}=\frac{-5a+3c}{-5b+3d}\)
Vậy....

\(125^7-25^{10}+5^{19}\)
\(=\left(5^3\right)^7-\left(5^2\right)^{10}+5^{19}\)
\(=5^{21}-5^{20}+5^{19}\)
\(=5^{19}.\left(5^2-5+1\right)\)
\(=5^{19}.21\)
\(=5^{18}.5.21\)
\(=5^{18}.105\)
Ta có: \(105⋮105\)
\(\Rightarrow5^{18}.105⋮105\)
\(\Rightarrow125^7-25^{10}+5^{19}⋮105\)
đpcm
\(125^7-25^{10}+5^{19}\)
\(=\left(5^3\right)^7-\left(5^2\right)^{10}+5^{19}\)
\(=5^{21}-5^{20}+5^{19}\)
\(=5^{19}.\left(5^2-5+1\right)\)
\(=5^{19}.21\)
\(=5^{18}.5.21=5^{18}.105⋮105\)
Vậy ......

Ta thấy:
\(\sqrt{40+2}< \sqrt{49}< 7\) (1)
\(\sqrt{40}>\sqrt{36}>6\) (2)
\(\sqrt{2}>\sqrt{1}>1\) (3)
Từ (2) và (3)
\(\sqrt{40}+\sqrt{2}>6+1>7\) (4)
Từ (1) và (4)
\(\Rightarrow\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)
Vậy \(\sqrt{40+2}< \sqrt{40}+\sqrt{2}\)

Ta co : \(3^x+3^{x+2}=2430\)
\(3^x.1+3^x.3^2=2430\)
\(3^x\left(1+3^2\right)=2430\)
\(3^x.10=2430\)
\(3^x=2430:10\)
\(3^x=243\)
\(\Rightarrow3^x=3^5\)
Vay x=5
**** nhe

Có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow\)\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2-y^2+2z^2}{4-9+2\cdot16}=\frac{108}{27}=4\)
\(\Rightarrow\begin{cases}x=4;x=-4\\y=6;y=-6\\z=8;z=-8\end{cases}\)
Vậy pt có nghiệm là \(\left[\begin{array}{nghiempt}x=4;y=6;z=8\\x=-4;y=-6;z=-8\end{array}\right.\)
???