
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A = \(\dfrac{1}{1+2+3}\)+\(\dfrac{1}{1+2+3+4}\)+...+ \(\dfrac{1}{1+2+...+2004}\)+ \(\dfrac{2}{2025}\)
A = \(\dfrac{1}{\left(1+3\right).3:2}\)+\(\dfrac{1}{\left(4+1\right).4:2}\)+...+ \(\dfrac{1}{\left(2024+1\right).2024:2}\)+\(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3.4}\)+\(\dfrac{2}{4.5}\)+...+\(\dfrac{2}{2024.2025}\)+ \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+...+ \(\dfrac{1}{2024.2025}\)) + \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+...+ \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)
A = 2.(\(\dfrac{1}{3}\) - \(\dfrac{1}{2025}\)) + \(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3}\) - \(\dfrac{2}{2025}\) + \(\dfrac{2}{2025}\)
A = \(\dfrac{2}{3}\)

Đề có phải là:
\(\dfrac{x+1}{2024}+\dfrac{x+2}{2025}+\dfrac{x+3}{2026}+\dfrac{x+4}{2027}=4\text{ ?}\)
\(\Rightarrow\text{ }\dfrac{x+1}{2024}+\dfrac{x+2}{2025}+\dfrac{x+3}{2026}+\dfrac{x+4}{2027}-4=0\)
\(\Rightarrow\text{ }\dfrac{x+1}{2024}+\dfrac{x+2}{2025}+\dfrac{x+3}{2026}+\dfrac{x+4}{2027}-1-1-1-1=0\)
\(\Rightarrow\left(\dfrac{x+1}{2024}-1\right)+\left(\dfrac{x+2}{2025}-1\right)+\left(\dfrac{x+3}{2026}-1\right)+\left(\dfrac{x+4}{2027}-1\right)=0\)
\(\Rightarrow\left(\dfrac{x+1-2024}{2024}\right)+\left(\dfrac{x+2-2025}{2025}\right)+\left(\dfrac{x+3-2026}{2026}\right)+\left(\dfrac{x+4-2027}{2027}\right)=0\)
\(\Rightarrow\dfrac{x-2023}{2024}+\dfrac{x-2023}{2025}+\dfrac{x-2023}{2026}+\dfrac{x-2023}{2027}=0\)
\(\Rightarrow\left(x-2023\right)\left(\dfrac{1}{2024}+\dfrac{1}{2025}+\dfrac{1}{2026}+\dfrac{1}{2027}\right)=0\)
Mà \(\dfrac{1}{2024}+\dfrac{1}{2025}+\dfrac{1}{2026}+\dfrac{1}{2027}\ne0\)
\(\Rightarrow x-2023=0\)
\(\Rightarrow x=0+2023\)
\(\Rightarrow x=2023\)
Vậy, \(x=2023.\)

\(1:\dfrac{2}{3}:\dfrac{3}{4}:\dfrac{4}{5}:...:\dfrac{2024}{2025}\)
= \(1\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{2025}{2024}=\dfrac{2025}{2}\)

A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)
A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)
A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\)) + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))
A = 0 + 0 +0 + 0+ ... + 0
A = 0

2023 mũ 2024+2024 mũ 2025+2025 mũ 2026
Xét 2023 mũ 2024
\(^{2023^{2024}}\)=\(^{2023^{4.501}}\)=(\(^{2023^4}\))\(^{^{501}}\)
Ta có:\(^{2023^4}\)tận cùng là 1
=>2023 mũ 4 tất cả mũ 501 tận cùng là 1
Xét 2024 mũ 2025
2024 mũ 2025=2024 mũ 2 .1012+1=2024 mũ 2.1012 nhân 2024=(2024 mũ 2)mũ 1012.2024
Ta có:2024 mũ 2 tận cùng là 6
=>(2024 mũ 2) tất cả mũ 1012 tận cùng là 6
=>(2024 mũ 2) tất cả mũ 1012 nhân 2024 tận cùng là4
Xét 2025 mũ 2026
2025 mũ 2026
5 mũ bao nhiêu thì chữ số tận cùng vẫn là 5
=>2025 mũ 2026 tận cùng là 5
Vậy tổng của các chữ số tận cùng là:1+4+5=10 chia hết cho 10
=> Tổng của 2023 mũ 2024+2024 mũ 2025+2025 mũ 2026 chia hết cho 10
Đây là bài áp dụng tính chất tìm chữ số tận cùng
Chúc bn học tốt
\(2023^{2024}+2024^{2025}+2025^{2026}\equiv\left(-1\right)^{1012}+\left(-1\right)^{2025}+0\equiv0\)(mod 5)
-> chia hết cho 5
Dễ dàng nhận thấy \(2023^{2024}+2025^{2026}\) là số chẵn mà \(2024^{2025}\)cũng là số chẵn nên chia hết cho 2
Do (2,5) = 1 nên chia hết cho 10

A = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + ... - 2023 + 2024 + 2025
Xét dãy số: 1; 2; 3; 4;..; 2025 là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là: ( 2025 - 1) : 1 + 1 = 2025
Vì 2025 : 4 = 506 dư 1
Nhóm 4 số hạng liên tiếp của A vào nhau thì được A là tổng của 506 nhóm và 2025 khi đó
A =(1-2-3+4)+(5 - 6 - 7 + 8) +...+(2021-2022-2023+2024) + 2025
A = 0 + 0 +...+ 0 + 2025
A = 2025

Số hạng của dãy số trên là : \(\left(2026-1\right):1+1\text{=}2026\)
Ta xét với cặp : 1-2 ; 3-4 ; ......... ; 2025-2026=-1
Tổng của dãy số trên là : \(\dfrac{\left(1-2\right).2026}{2}\text{=}-1013\)

\(6\cdot7^{2025}+7\cdot7^{2025}:7^{2025}\)
\(=6\cdot7^{2025}+7^{2025}:7^{2025}\)
\(=6\cdot7^{2025}+1\)

\(B=2025+\dfrac{2025}{1+2}+\dfrac{2025}{1+2+3}+...+\dfrac{2025}{1+2+...+2024}\)
\(=2025\left(1+\dfrac{1}{2\cdot\dfrac{3}{2}}+\dfrac{1}{3\cdot\dfrac{4}{2}}+...+\dfrac{1}{2024\cdot\dfrac{2025}{2}}\right)\)
\(=2025\left(\dfrac{2}{2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{2024\cdot2025}\right)\)
\(=2025\cdot2\left(\dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2024\cdot2025}\right)\)
\(=2025\cdot2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2024}-\dfrac{1}{2025}\right)\)
\(=2025\cdot2\cdot\left(1-\dfrac{1}{2025}\right)=2025\cdot2\cdot\dfrac{2024}{2025}=2\cdot2024=4048\)
B là /