
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có: A = 2x2 + 4y2 - 4xy - 4x - 4y + 15
= (x2 - 4xy + 4y2) + 2(x - 2y) + 1 + (x2 - 6x + 9) + 5
= (x - 2y)2 + 2(x - 2y) + 1 + (x - 3)2 + 5
= (x - 2y + 1)2 + (x - 3)2 + 5 \(\ge\)5 \(\forall\)x; y
Daaus "=" xảy ra <=> \(\left\{{}\begin{matrix}x-2y+1=0\\x-3=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}y=\frac{x+1}{2}\\x=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
Vậy MinA = 5 khi x = 3 và y = 2
\(=2\left(x^2-2xy+y^2-2x+2y+1\right)+2\left(y^2-4y+4\right)+5\)
\(=\left(y-x+1\right)^2+2\left(y-2\right)^2+5\ge5\)
Vậy MIN=5 khi \(\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)

1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu


\(P=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+x^2-4x+2019\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(x-2\right)^2+2014\)
\(=\left(x-2y+1\right)^2+\left(x-2\right)^2+2014\ge2014\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=2\\x=2y-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\frac{3}{2}\end{matrix}\right.\)
Vậy...
\(P=2x^2+4y^2-4xy-2x-4y+2019\)
\(P=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(x-2\right)^2+2014\) ( Bước này mình làm hơi tắt , cái này bạn chỉ cần chú ý để tách ra thôi )
\(P=\left(x-2y+1\right)^2+\left(x-2\right)^2+2014\ge2014\)
Dấu '' = '' xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2y+1=0\\x=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-2y=0\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3}{2}\\x=2\end{matrix}\right.\)
Vậy Min \(P=2014\Leftrightarrow\left\{{}\begin{matrix}y=\frac{3}{2}\\x=2\end{matrix}\right.\)

2x2+4y2+4xy+2x+4y+9
=x2 +4y2+4xy+1+2x+4y+x2+9
=(x+2y)2+2(x+2y)+1+x2+9
=(x+2y+1)2+x2+9
có (x+2y+1)2≥0 với mọi x,y
x2≥0 với mọi x
⇒(x+2y+1)2+x2 ≥0với mọi x,y
⇒(x+2y+1)2+x2+9≥9với mọi x,y
⇒
ta có :
A = 2x2+4y2+4xy+2x+4y+9 = 2x2+2x+4y2+4y+4xy+9
= 2x(x+1)+4y(y+1)+4xy+9
= 2x(x+1)+4y(y+x+1)+9
= (x+1)(2x+4y2)+9
=> A lớn hơn hoặc bằng 9
=> min A là 9

\(N=5x^2+4y^2+4xy+4x\)
\(N=\left(x^2+4xy+4y^2\right)+\left(4x^2+4x+1\right)-1\)
\(N=\left(x+2y\right)^2+\left(2x+1\right)^2-1\)
Mà \(\left(x+2y\right)^2\ge0\forall x;y\)
\(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow N\ge-1\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}x+2y=0\\2x+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=-\frac{1}{2}\end{cases}}\)
Vậy ...

\(C=2x^2+5y^2+4xy+8x-4y-100 \)
\(C=\left(x^2+8x+16\right)+\left(y^2-4y+4\right)+\left(x^2+4xy+4y^2\right)-120\)
\(C=\left(x+4\right)^2+\left(y-2\right)^2+\left(x+2y\right)^2-120\ge-120\)
Vậy GTNN của C là -120 khi x = -4; y = 2
\(C=x^2+4xy+4y^2+x^2+8x+16+y^2-4y+4-120\)
\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-120\ge-120\)
vậy GTNN của C là -120 khi \(x=-4;y=2\)

a, \(A_{\left(x\right)}=2x^2+2xy+y^2-2x+2y+2\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)-3\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\) hay \(A_{\left(x\right)}\ge-3\)
Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy \(minA_{\left(x\right)}=-3\) khi x=-3; y=2
b, \(B_{\left(x\right)}=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\Leftrightarrow B_{\left(x\right)}\ge2\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy \(minB_{\left(x\right)}=2\Leftrightarrow x=-3;y=1\)
c, \(C_{\left(x\right)}=x^2-10xy+26y^2+14x-76y+59\)
\(=\left(x^2+25y^2+49-10xy+14x-70y\right)+\left(y^2-6y+9\right)+1\)
\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\Leftrightarrow C_{\left(x\right)}\ge1\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-5y+7\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-5y+7=0\\y-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)
Vậy \(minC_{\left(x\right)}=1\Leftrightarrow x=8;y=3\)
d, \(D_{\left(x\right)}=4x^2-4xy+2y^2-20x-4y+174\)
\(=\left(4x^2+y^2+25-4xy-20x+10y\right)+\left(y-14y+49\right)+74\)
\(=\left(2x-y-5\right)^2+\left(y-7\right)^2+74\ge74\Leftrightarrow D_{\left(x\right)}\ge74\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(2x-y-5\right)^2=0\\\left(y-7\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-y-5=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\)
Vậy \(minD_{\left(x\right)}=74\Leftrightarrow x=6;y=7\)
e, \(E_{\left(x\right)}=x^2-2x+y^2+4y+5\)
\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy \(minE_{\left(x\right)}=0\Leftrightarrow x=1;y=-2\)
bạn ơi! Sao cái chỗ A(x) =(x+y+1)2+(x-2)2-3 mà chuyển sang lại là -3 v

\(A=2x^2+4y^2+4xy+10x+12y+18\)
\(A=x^2+4xy+4y^2+6x+12y+9+x^2+4x+4+5\)
\(A=\left(x+2y^2\right)+2.3\left(x+2y\right)+9+\left(x+2\right)^2+5\)
\(A=\left(x+2y+3\right)^2+\left(x+2\right)^2+5\)
Do \(\hept{\begin{cases}\left(x+2y+3\right)^2\ge0\forall x\\\left(x+2\right)^2\ge0\forall x\end{cases}}\)
\(\Leftrightarrow\left(x+2y+3\right)^2+\left(x+2\right)^2+5\ge5\)
" = " \(\Leftrightarrow\hept{\begin{cases}x+2y+3=0\\x+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=-2\end{cases}}}\)
\(\Rightarrow A_{min}=5\Leftrightarrow\hept{\begin{cases}x=-2\\y=-\frac{1}{2}\end{cases}}\)
Chúc bạn học tốt !!!
Giá trị nhỏ nhất của biểu thức là 1995, đạt được khi \(x = 3\), \(y = 2\).