K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

vẽ hình đi rồi giải cho

a: ΔABC có G là trọng tâm

nên AG cắt BC tại trung điểm M của BC

=>\(AG=\dfrac{2}{3}AM\)

Ta có: MB+BD=MD

MC+CE=ME

mà MB=MC và BD=CE

nên MD=ME

=>M là trung điểm của DE

Xét ΔADE có

AM là đường trung tuyến

\(AG=\dfrac{2}{3}AM\)

Do đó: G là trọng tâm của ΔDAE

b: Xét ΔDAE có

G là trọng tâm

=>N là trung điểm của AE

Xét ΔEAD có

M,N lần lượt là trung điểm của ED,EA

=>MN là đường trung bình của ΔEAD

=>MN//AD và MN=AD/2(1)

Xét ΔGAD có

I,J lần lượt là trung điểm của GA,GD

=>JI là đường trung bình của ΔEAD

=>JI//AD và JI=AD/2(2)

Từ (1),(2) suy ra MN//JI và MN=JI

 

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNHBài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng : a) AE = BC; b)AB // ECBài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BCBài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân...
Đọc tiếp

BÀI TẬP VỀ TRƯỜNG HỢP CẠNH GÓC CẠNH

Bài 1: Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm E sao cho IE = IB. Chứng minh rằng :

a) AE = BC; b)AB // EC

Bài 2: Cho góc xOy.Trên cạnh Ox lấy các điểm A và B, trên cạnh Oy lấy các điểm C và D sao cho OA = OC, OB = OD. Chứng minh rằng: AD = BC

Bài 3: Tên các cạnh Ox và Oy của góc xOy, lấy các điểm A và B sao cho OA = OB.Tia phân giác của góc xOy cắt AB ở C. Chứng minh rằng

a) C là trung điểm của AB

b) AB vuông góc với OC

Bài 4: Cho tam giác ABC có AB = AC, M là trung điểm của cạnh BC. Trên tia đối của tia BC và CB lấy tương ứng hai điểm D và E sao cho BD = CE. Chứng minh rằng AM là tia phân giác của góc BAC và DAE

Bài 5: Cho tam giác ABC có góc A = 1000, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm K sao cho MK = MA

a) Tính số đo góc ABK

b) về phía ngoài tam giác ABC, vẽ các đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Chứng minh rằng: tam giác ABK bằng tam giác DAK

c) Chứng minh MA vuông góc với DE

Bài 6: Cho tam giác ABC, D là trung điểm của cạnh AB, E là trung điểm của cạnh AC. Chứng minh rằng DE//BC và DE = 1/2 BC

Bài 7: Cho tam giác ABC vuông tại A, M là trung điểm của BC. Chứng minh rằng AM =1/2BC

Bài 8: Cho tam giác ABC vuông tại A và AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC

a) Chứng minh rằng DE vuông góc với BC

b) Cho biết 4B = 5C trung điểm của BC. Chứng minh rằng :

a) FH = 2DE.

b) FH vuông góc với DE.

3
15 tháng 12 2016

nhìu quá bn à TTvTT

23 tháng 12 2016

từ từ thui

12 tháng 3 2019

19 tháng 3 2021

undefinedundefined

18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

2 tháng 3
  • Chứng minh ∆ADE = ∆ABC:
    Dùng tiêu chí Cạnh-Góc-Cạnh vì:
    • \(A B = A D\) (A là trung điểm của BD).
    • \(A C = A E\) (A là trung điểm của CE).
    • \(\angle B A C = \angle D A E\) (góc đối đỉnh).
  • Chứng minh DE // BC:
    \(\Delta A D E = \Delta A B C\) (theo C-G-C), nên:
    \(\angle A D E = \angle A B C\)\(\angle D E A = \angle A C B\).
    DE // BC theo định lý góc đồng vị.
  • Chứng minh M, A, N thẳng hàng:
    M, N lần lượt là trung điểm của DE và BC nên AM là đường trung bình của tam giác lớn. Đường trung bình đi qua trung điểm nối song song với cạnh còn lại nên M, A, N thẳng hàng.

a: Gọi G là trọng tâm, M là trung điểm của BC

=>AG=2/3AM

BM+BE=EM

CM+CF=MF

mà BM=CM; BE=CF

nên EM=MF

=>M là trung điểm củaEF

Xet ΔAEF có

AM là trung tuyến

AG=2/3AM

=>G là trọng tâm của ΔAEF

b: G là trọng tâm cùa ΔAEF

=>N là trung điểm của AF

Xét ΔAEF có FM/FE=FN/FA

nên MN//AE và MN=1/2AE

Xét ΔGAE có GH/GA=GI/GE

nên HI//AE và HI=1/2AE
=>MN//HI và MN=HI

11 tháng 12 2020

HOI KHO ^.^

17 tháng 11 2021

Khó quá