K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) XétΔABM vuông tại M và ΔACM vuông tại M có

AB=AC
AM chung

=>ΔABM=ΔACM

a: Xét ΔAMB vuông tại M và ΔAMC vuông tại M có

AM chung

AB=AC

Do đó: ΔAMB=ΔAMC

b:

ΔAMB=ΔAMC

=>MB=MC

Xét ΔMBP và ΔMCK có

MB=MC

\(\widehat{BMP}=\widehat{CMK}\)(hai góc đối đỉnh)

MP=MK

Do đó: ΔMBP=ΔMCK

=>BP=CK

ΔMBP=ΔMCK

=>\(\widehat{MBP}=\widehat{MCK}\)

mà hai góc này là hai góc ở vị trí so le trong

nên BP//CK

c: Xét ΔHBM và ΔKCM có

HB=KC

\(\widehat{HBM}=\widehat{KCM}\)

BM=CM

Do đó: ΔHBM=ΔKCM

=>MH=MK

=>MH=1/2PK

Xét ΔHPK có

HM là đường trung tuyến

HM=1/2PK

Do đó: ΔHPK vuông tại H

=>HP\(\perp\)HK

d: Ta có: AH+HB=AB

AK+KC=AC

mà AB=AC và BH=CK

nên AH=AK

Xét ΔABC có \(\dfrac{AH}{AB}=\dfrac{AK}{AC}\)

nên HK//BC

=>EM//HK

Xét ΔPHK có

M là trung điểm của PK

ME//HK

Do đó: E là trung điểm của HP

Ta có: AH=AK

=>A nằm trên đường trung trực của HK(1)

Ta có: MH=MK

=>M nằm trên đường trung trực của HK(2)

Từ (1),(2) suy ra AM là đường trung trực của HK

=>AM\(\perp\)HK tại N và N là trung điểm của HK

Xét ΔHPK có

KE,HM là các đường trung tuyến

KE cắt HM tại G

Do đó: G là trọng tâm của ΔHPK

Xét ΔHPK có

G là trọng tâm

N là trung điểm của HK

Do đó: P,G,N thẳng hàng

19 tháng 4 2016

a)

xét tam giác ABM và tam giác ACM có:
AB=AC(gt)

MB=MC(gt)

B=C(gt)

suy ra tam giác ABM=ACM(c.g.c)

b)

xét 2 tam giác vuông AHC và AKB có:

AB=AC(gt)

A(chung)
suy ra tam giác AHB=AKB(CH-GN)

suy ra AH=AK

AB=AC

BH=AB=AH

CK=AC-AK

từ tất cả nh điều trên suy ra BH=CK

c)

xét tam giác KBC và tma giác HCB có:
CB(chugn)
HB=KC(theo câu b)
B=C(gt)

suy ra tam giác KBC=ACB(c.g.c)

suy ra KBC=HCB suy ra tam giác IBC cân tại I

19 tháng 4 2016

A B C H K I

13 tháng 3 2021

sao bạn nói bậy thế

13 tháng 3 2021

thèm thì đi ra khách mà lm

7 tháng 7 2018

A B C H K I D E

a) Tao có :)  \(\Delta ABC\)cân tại A  \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

T lại có :) \(\widehat{ABC}=\widehat{HBD}\left(đđ\right)\)

              \(\widehat{ACB}=\widehat{KCE}\left(đđ\right)\)

\(\Rightarrow\widehat{HBD}=\widehat{KCE}\)

Xét  \(\Delta HBD\)và \(\Delta KCE\)t có :)

\(\widehat{HBD}=\widehat{KCE}\)

\(BD=CE\)

\(\widehat{DHB}=\widehat{EKC}\left(=90^o\right)\)

\(\Rightarrow\Delta HBD=\Delta KCE\left(ch-gn\right)\)

\(\Rightarrow HB=KC\left(đpcm\right)\)

b) T có :)  \(\widehat{ABH}+\widehat{ABC}=180^o\)( kề bù )

                 \(\widehat{ACK}+\widehat{ACB}=180^o\)( kề bù )

Mà :)  \(\widehat{ABC}=\widehat{ACB}\)

\(\Rightarrow\widehat{ABH}=\widehat{ACK}\)

Xét  \(\Delta AHB\)và  \(\Delta AKC\)có :)

\(HB=CK\)

\(\widehat{ABH}=\widehat{ACK}\)

\(AB=AC\)

\(\Rightarrow\Delta AHB=\Delta AKC\left(c-g-c\right)\)

\(\Rightarrow\widehat{AHB}=\widehat{AKC}\left(đpcm\right)\)

c) Do  \(\Delta ABC\)cân tại A  \(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)

Mà :)  \(AB=AC\)

         \(BD=CE\)

\(\Rightarrow AB+BD=AC+CE\)

\(\Rightarrow AD=AE\)

\(\Rightarrow\Delta ADE\)cân tại A  \(\Rightarrow\widehat{ADE}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\widehat{ABC}=\widehat{ADE}\)

Mà hai góc trên đồng vị :)

\(\Rightarrow HK//DE\left(đpcm\right)\)

d) Theo câu b t có  \(\Delta AHB=\Delta AKC\)

\(\Rightarrow\hept{\begin{cases}AH=AK\\\widehat{HAB}=\widehat{KAC}\end{cases}}\)

\(\Rightarrow\widehat{HAB}+\widehat{BAC}=\widehat{KAC}+\widehat{BAC}\)

\(\Leftrightarrow\widehat{HAC}=\widehat{KAB}\)

Xét  \(\Delta AHE\)và  \(\Delta AKD\)có :)

\(\widehat{HAC}=\widehat{KAB}\)

\(AH=AK\)

\(AE=AD\)

\(\Rightarrow\Delta AHE=\Delta AKD\left(c-g-c\right)\left(đpcm\right)\)

e)  \(\Rightarrow\widehat{AHE}=\widehat{AKD}\)

\(\Leftrightarrow\widehat{AHK}+\widehat{KHE}=\widehat{AKH}+\widehat{HKD}\)

Mà :) \(\widehat{AHK}=\widehat{AKH}\)( câu b )

\(\Rightarrow\widehat{KHE}=\widehat{HKD}\Rightarrow\Delta HIK\)cân tại I

\(\Rightarrow HI=IK\)

Xét  \(\Delta AHI\)và  \(\Delta AKI\)có :)

\(HI=IK\)

\(AH=AK\)

Chung AI

\(\Rightarrow\Delta AHI=\Delta AKI\left(c-c-c\right)\)

\(\Rightarrow\widehat{HAI}=\widehat{KAI}\)

\(\Leftrightarrow\widehat{HAB}+\widehat{BAI}=\widehat{CAI}+\widehat{KAC}\)

Lại có :)  \(\widehat{HAB}=\widehat{KAC}\)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\)

\(\Rightarrow\)AI là tia phân giác  \(\widehat{BAC}\)hay \(\widehat{DAE}\)

Mà  \(\Delta DAE\)cân tại A

\(\Rightarrow AI\perp DE\)( do đường phân giác của đỉnh tam giác cân cũng chính là đường cao của tam giác cân đó )

Vậy .... :)

7 tháng 7 2018

Hình vẽ :  

a) Dễ nhận thấy DE = KH = 1/2 BC

Do đó KH = 1/2BC suy ra KB + CH = 1/2BC=KH

Vậy KB + CH = KH

Do vậy 2KB + CH = KH + KB (1)

           KB + 2CH = KH + KB (2)

Từ đó suy ra CH = KB

Mà HB = KH + KB (3)

CK = KH + HC (4)

Mà KB = HC nên KH + KB  = KH + HC hay HB = CK

b) Chứng minh \(\Delta AHB=\Delta AKC\)

Ta có: \(\Delta AHB=\Delta AKC\left(c.g.c\right)\)

Suy ra \(\widehat{AHB}=\widehat{AKC}\)

c) Theo hình vẽ ta có BD = CE và BD là tia đối của BA, nên BD thẳng hàng với BA

 CE là tia đối của CA nên CE thẳng hàng với CA

Do đó CE = BD . DO đó EK = DH.

Theo đề bài DH và EK cùng vuông góc BC (5) mà DH = EK do đó \(\widehat{D}=90^o;\widehat{E}=90^o\)(6)

Từ (5) và (6) suy ra HK song song DE

Sau đó tự làm tiếp

27 tháng 12 2016

Bài 1( Hình mik đăng lên trước nha, mới lại phần bn nối điểm K với B, điểm F với D hộ mik nhé)

a) Xét tam giác EFA và tam giác CAB, có:

AE = AC ( giả thiết)

AF = AB (giả thiết)

Góc EAF = góc BAC (2 góc đối đỉnh)

=> ΔEAF = ΔCAB (c.g.c)

b) Vì ΔEFA = ΔCAB (Theo a)

=> Góc ABC = Góc EFA (cặp góc tương ứng)

=> EF = BC (cặp cạnh tương ứng) (1)

Mà EK = KF = 1/2 EF (2)

BD = DC = 1/2 BC (3)

Từ (1), (2) và (3)

=> KF = BD

Xét ΔKFB và ΔFBD, có

Cạnh BF chung

KF = BD (chứng minh trên)

Góc EFB = Góc ABC (chứng minh trên)

=> ΔKFB =ΔDBF (c.g.c)

=> KB = FD (cặp cạnh tương ứng)

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

a: Xét ΔAMB và ΔAMD có

AM chung

MB=MD

AB=AD

Do đó: ΔAMB=ΔAMD

b: ta có: ΔABD cân tại A

mà AM là đường trung tuyến

nên AM là đường cao

c: Xét ΔABK và ΔADK có

AB=AD

\(\widehat{BAK}=\widehat{DAK}\)

AK chung

Do đó: ΔABK=ΔADK

d: Xét ΔKBE và ΔKDC có

KB=KD

\(\widehat{KBE}=\widehat{KDC}\)

BE=DC

Do đó: ΔKBE=ΔKDC

Suy ra: \(\widehat{BKE}=\widehat{DKC}\)

=>\(\widehat{BKE}+\widehat{BKD}=180^0\)

hay E,K,D thẳng hàng