Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)
bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.

\(n^{150}< 5^{225}\)
\(\Rightarrow n^{150}=\left(n^2\right)^{75}\)
\(\Leftrightarrow\left(n^2\right)^{75}< \left(5^3\right)^{75}\)
\(\Rightarrow n^2< 125\)
\(\Rightarrow n< 12\)
\(\left|x-3,5\right|+\left|4,5-x\right|=0\)
\(\Rightarrow\left|x-3,5\right|=\left|4,5-x\right|\)
\(\Rightarrow x-3,5=4,5-x\)
\(\Rightarrow x+x=4,5+3,5\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)

\(A=\frac{1-6n}{2n-3}=\frac{-6n+9-8}{2n-3}=-3+\frac{-8}{2n-3}\)
Để \(A\in Z\Rightarrow\frac{-8}{2n-3}\in Z\)
\(\Rightarrow-8⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(-8\right)\)
\(\Rightarrow2n+3\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Vì \(2n+3\)là số lẻ
\(\Rightarrow2n+3\in\left\{1;-1\right\}\)
\(\Rightarrow2n\in\left\{-2;-4\right\}\)
\(\Rightarrow n\in\left\{-1;-2\right\}\)
Vậy...
A=\(\frac{1-6n}{2n-3}\)
=\(\frac{-6n+9-8}{2n-3}\)
= \(-3+\frac{-8}{2n-3}\)
để \(A\inℤ\Leftrightarrow\frac{-8}{2n-3}\inℤ\)
\(\Leftrightarrow-8⋮2n+3\)
\(\Leftrightarrow2n+3\inƯ\left(-8\right)\)
MÀ Ư(-8)=\(\hept{\pm1;\pm2;\pm4;\pm8}\)
VÌ 2n+3 là số lẻ nên ta có bảng:
2n+3 | 1 | -1 |
2n | -2 | -4 |
n | -1 | -2 |
vậy n\(\in\hept{-1;-2}\)
thì A là 1 số nguyên

1)
có -21 chia hết cho 3,
3x chia hết cho3
mà 3x-4y=-21
suy ra 4y chia hết cho 3.mà (3,4)=1
suy ra y chia hết cho 3.y nguyên dương, y nhỏ hơn 10
suy ra y thuộc 3;6;9
3)
xét 5^n-1
=5^n+5^(n-1)+5^(n-2)+...+5^1-(5^(n-1)+5^(n-2)+...+5+1)
=5.(....)-1.(...)
=4.(...) chia hết cho 4

Ta có :
A = 3n + 9/n - 4
A = 3n - 12 + 21/n - 4
A = 3 x ( n - 4 )/n - 4 + 21/n - 4
A = 3 x ( n- 4 )/n - 4 + 21/n - 4
A = 3 + 21/n -4
Để A nguyên thì 21/n - 4 nguyên
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư ( 21 )
=> n - 4 thuộc ( 1 ; -1 ; -3 ; -7 ; 21 ; -21 )
=> n thuộc ( 5 ; 3 ; 7 ; 1 ; 11 ; -3 ; 15 ; -17 )
K nha mọi người !!
Ta có:
A = 3n + 9/n - 4
A = 3n - 12 + 21/n - 4
A = 3.(n - 4) + 21/n - 4
A = 3.(n - 4)/n - 4 + 21/n - 4
A = 3 + 21/n - 4
Để A nguyên thì 21/n - 4 nguyên
=> 21 chia hết cho n - 4
=> n - 4 thuộc Ư(21)
=> n - 4 thuộc {1 ; -1 ; 3 ; -3 ; 7 ; -7 ; 21 ; -21}
=> n thuộc {5 ; 3 ; 7 ; 1 ; 11 ; -3 ; 25 ; -17}
4. Tìm n nguyên dương lớn nhất sao cho phần nguyên của \(\frac{n^{2} + 1}{n + 1}\) không vượt quá x
Gợi ý giải: