
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(B=\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)\cdot...\cdot\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{19}{20}\)
\(B=\frac{1}{20}\)

\((2,7.x-1\frac{1}{2})\div\frac{2}{7}=\frac{-21}{4}\) \(3\frac{1}{3}.x+16\frac{3}{4}=-13.25\)
\(2,7.x-1\frac{1}{2}=-\frac{21}{4}\cdot\frac{2}{7}\) \(\frac{10}{3}.x+\frac{67}{4}=-13.25\)
\(2,7.x-\frac{3}{2}=-\frac{3}{2}\) \(\frac{10}{3}.x+\frac{67}{4}=-\frac{53}{4}\)
\(2,7.x=-\frac{3}{2}+\frac{3}{2}\) \(\frac{10}{3}.x=-\frac{53}{4}-\frac{67}{4}\)
\(2,7.x=0\) \(\frac{10}{3}.x=-30\)
\(x=0:2,7\) \(x=-30:\frac{10}{3}\)
\(x=0\) \(x=-9\)
Vậy x=0 Vậy x= -9
\(\left(4.5-2.x\right):\frac{3}{4}=1\frac{1}{3}\) \(1.5+1\frac{1}{4}.x=\frac{2}{3}\)
\(\left(4.5-2.x\right)=1\frac{1}{3}\cdot\frac{3}{4}\) \(1\frac{1}{4}.x=\frac{2}{3}-1.5\)
\(4.5-2.x=\frac{4}{3}\cdot\frac{3}{4}\) \(\frac{5}{4}.x=\frac{2}{3}-\frac{3}{2}\)
\(4.5-2.x=1\) \(\frac{5}{4}.x=-\frac{5}{6}\)
\(2.x=4.5-1\) \(x=-\frac{5}{6}:\frac{5}{4}\)
\(2.x=3.5\) \(x=-\frac{2}{3}\)
\(x=3.5:2\)
\(x=1.75\) Vậy \(x=-\frac{2}{3}\)
Vậy x=1.75

biết làm bài 1 thôi
\(\left(\frac{1}{2}+1\right)\times\left(\frac{1}{3}+1\right)\times\cdot\cdot\cdot\times\left(\frac{1}{999}+1\right)\)
= \(\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times\cdot\cdot\cdot\times\frac{1000}{999}\)
lượt bỏ đi còn :
\(\frac{1000}{2}=500\)

3. \(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{10.11.12}\)
\(\Leftrightarrow2M=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{10.11.12}\)
\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\)
\(\Leftrightarrow2M=\frac{1}{1.2}-\frac{1}{11.12}\)
\(\Leftrightarrow2M=\frac{1}{2}-\frac{1}{132}\)
\(\Leftrightarrow2M=\frac{65}{132}\)
\(\Leftrightarrow M=\frac{65}{132}\div2\)
\(\Leftrightarrow M=\frac{65}{264}\)
1\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{899}{900}\)
\(\Leftrightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}\)
\(\Leftrightarrow A=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}\)
\(\Leftrightarrow A=\frac{\left(1.2.3....29\right)\left(3.4.5...31\right)}{\left(2.3.4...30\right)\left(2.3.4...30\right)}\)
\(\Leftrightarrow A=\frac{1.31}{30.2}\)
\(\Leftrightarrow A=\frac{31}{60}\)

Bài 1: Tìm \( x \)
\[
x - \frac{25\%}{100}x = \frac{1}{2}
\]
Để giải phương trình này, trước hết chúng ta phải chuyển đổi phần trăm thành dạng thập phân:
\[
\frac{25\%}{100} = 0.25
\]
Phương trình ban đầu trở thành:
\[
x - 0.25x = \frac{1}{2}
\]
Tổng hợp các hạng tử giống nhau:
\[
1x - 0.25x = \frac{1}{2}
\]
\[
0.75x = \frac{1}{2}
\]
Giải phương trình ta được:
\[
x = \frac{\frac{1}{2}}{0.75} = \frac{2}{3}
\]
Vậy, \( x = \frac{2}{3} \)
Bài 2: Tính hợp lý
a) \[
\frac{5}{-4} + \frac{3}{4} + \frac{4}{-5} + \frac{14}{5} - \frac{7}{3}
\]
Chúng ta cần tìm một mẫu số chung cho tất cả các phân số. Mẫu số chung nhỏ nhất là 60.
\[
= \frac{75}{-60} + \frac{45}{60} + \frac{-48}{60} + \frac{168}{60} - \frac{140}{60}
\]
\[
= \frac{75 + 45 - 48 + 168 - 140}{60}
\]
\[
= \frac{100}{60} = \frac{5}{3}
\]
b) \[
\frac{8}{3} \times \frac{2}{5} \times \frac{3}{10} \times \frac{10}{92} \times \frac{19}{92}
\]
Tích của các phân số là:
\[
= \frac{8 \times 2 \times 3 \times 10 \times 19}{3 \times 5 \times 10 \times 92 \times 92}
\]
\[
= \frac{9120}{4131600} = \frac{57}{25825}
\]
c) \[
\frac{5}{7} \times \frac{2}{11} + \frac{5}{7} \times \frac{9}{14} + \frac{1}{5}
\]
Tích của các phân số là:
\[
= \frac{10}{77} + \frac{45}{98} + \frac{1}{5}
\]
\[
= \frac{980}{7546} + \frac{3485}{7546} + \frac{15092}{75460}
\]
\[
= \frac{2507}{7546}
\]

a, \(\frac{4x}{3}=\frac{14x}{3}+5\)
\(\frac{4x}{3}-\frac{14x}{3}=5\)
\(\frac{-10x}{3}=5\)
x=-1,5
b, 3x-5x=2-4
-2x=-2
x=1
c, \(\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right)\) .x=2
\(\left(\frac{1}{1}-\frac{1}{12}\right).x=2\)
\(\frac{11}{12}.x=2\)
x=\(\frac{24}{11}\)
d, \(x=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{101.103}\right)\)
\(x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)\)
x=\(\frac{1}{2}\left(1-\frac{1}{103}\right)\)
x=\(\frac{1}{2}.\frac{102}{103}\)
x=\(\frac{51}{103}\)
x+1=\(\frac54:\frac14\)
x+1=5
x=5-1
x=4
x+1=\(\frac{5}{4} : \frac{1}{4}\)
x+1=5
x=5-1
x=4