\(\hat{A} = 2 \alpha \left(\right....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC cân tại A

mà AD là đường cao

nên AD là phân giác của góc BAC

=>\(\widehat{BAD}=\widehat{CAD}=\dfrac{\widehat{BAC}}{2}=\alpha\)

\(sin\alpha=sinBAD=\dfrac{BD}{BA};cos\alpha=cosBAD=\dfrac{AD}{AB}\)

\(sin2\alpha=sin\widehat{BAC}=\dfrac{BE}{AB}\)

\(cos2\alpha=cosBAC=\dfrac{AE}{AB}\)

Xét ΔCDA vuông tại D và ΔCEB vuông tại E có

\(\widehat{DCA}\) chung

Do đó: ΔCDA~ΔCEB

=>\(\dfrac{CD}{CE}=\dfrac{CA}{CB}=\dfrac{DA}{EB}\)

=>\(\dfrac{CD}{CA}=\dfrac{CE}{CB};DA=\dfrac{CA\cdot EB}{CB};EB=\dfrac{DA\cdot CB}{CA}\)

 

18 tháng 3

giúp với 2h học r


26 tháng 7 2017

Kết quả:

A=1    B=2   C=-4

3 tháng 10 2018

\(A=\sin^6\alpha+cos^6\alpha+3\sin^2\alpha\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right).\)vì\(\sin^2\alpha+\cos^2\alpha=1\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^3=1^3=1\)

\(B=2\left(\cos^2\alpha+\sin^2\alpha\right)=2.1=2\)

\(C=\frac{-4\cos\alpha\sin\alpha}{\sin\alpha\cos\alpha}=-4\)

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:
a)

\(\cos ^2a+\cos ^2b+\cos ^2a\sin ^2b+\sin ^2a\)

\(=(\cos ^2a+\sin ^2a)+\cos ^2b+\cos ^2a\sin ^2b\)

\(=1+1-\sin ^2b+\cos ^2a\sin ^2b\)

\(=2-\sin ^2b(1-\cos ^2a)=2-\sin ^2b\sin ^2a\)

b)

\(2(\sin a-\cos a)^2-[(\sin a+\cos a)^2+\sin a\cos a]\)

\(=2(\sin ^2a-2\sin a\cos a+\cos ^2a)-[\sin ^2+2\sin a\cos a+\cos ^2a+\sin a\cos a]\)

\(=2(1-2\sin a\cos a)-(1+3\sin a\cos a)\)

\(=1-7\sin a\cos a\)

c)

\((\tan a-\cot a)^2-(\tan a+\cot a)^2\)

\(=\tan ^2a+\cot ^2a-2\tan a\cot a-(\tan ^2a+\cot ^2a+2\tan a\cot a)\)

\(=-4\tan a\cot a=-4\)

21 tháng 6 2017

đáp án :

a) \(cos^2\alpha\)

b) 1

c) \(sin^2\alpha\)

d) \(sin^2\alpha\)

e) 2

g) 1

h) \(sin^3\alpha\)

i) \(sin^2\alpha\)

13 tháng 9 2017

vô ib mk chỉ cho

31 tháng 10 2017

\(a,1-sin^2\alpha=cos^2\alpha\)

\(b,\left(1-cos\alpha\right)\left(1+cos\alpha\right)=1-cos^2\alpha=sin^2\alpha\)

\(c,1+sin^2\alpha+cos^2\alpha=1+1=2\)

\(d,sin\alpha-sin\alpha.cos^2\alpha=sin\alpha.\left(1-cos^2\alpha\right)=sin\alpha.sin^2\alpha=sin^3\alpha\)

\(e,sin^2\alpha+cos^2\alpha+2sin^2\alpha.cos^2\alpha\)

\(=1+2sin^2\alpha.cos^2\alpha\)

7 tháng 6 2018

a, Sử dụng tích chéo:

Ta có:

+/ \(\cos\alpha.\cos\alpha=\cos^2\alpha\) (1)

+/ \(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)=1-\sin^2\alpha\)

\(\sin^2\alpha+\cos^2\alpha=1\)

\(\Rightarrow1-\sin^2\alpha=\cos^2\alpha\)

hay \(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)=\cos^2\alpha\) (2)

Từ (1), (2)

\(\Rightarrow\)\(\cos\alpha.\cos\alpha=\)\(\left(1+\sin\alpha\right)\left(1-\sin\alpha\right)\)

\(\Rightarrow\)\(\dfrac{\cos\alpha}{1-\sin\alpha}=\dfrac{1+\sin\alpha}{\cos\alpha}\) (đpcm)

b/ xem lại đề

7 tháng 6 2018

sr bạn nha mình ghi thiếu đằng sau biểu thức đó là = 4